Comparison of the Pharmacokinetics of Gadolinium-Based and Iron Oxide-Based Contrast Agents inside the Lymphatic Structure using Magnetic Resonance Lymphangiography

Notohamiprodjo M, Baumeister RGH, Jakobs TF et al (2009) MR-lymphangiography at 3.0T-a feasibility study. Eur Radiol 19:2771–2778

Article  PubMed  Google Scholar 

Notohamiprodjo M, Weiss M, Baumeister RG et al (2012) MR lymphangiography at 3.0 T: correlation with lymphoscintigraphy. Radiology 264:78–87

Article  PubMed  Google Scholar 

White RD, Weir-McCall JR, Budak MJ, Waugh SA, Munnoch DA, Sudarshan TAP (2014) Contrast-enhanced magnetic resonance lymphography in the assessment of lower limb lymphoedema. Clin Radiol 69:E435–E444

Article  CAS  PubMed  Google Scholar 

Mitsumori LM, McDonald ES, Wilson GJ, Neligan PC, Minoshima S, Maki JH (2015) MR lymphangiography: how i do it. J Magn Reson Imaging 42:1465–1477

Article  PubMed  Google Scholar 

Kim EY, Hwang HS, Lee HY et al (2016) Anatomic and functional evaluation of central lymphatics with noninvasive magnetic resonance lymphangiography. Medicine 95:e3109

Article  PubMed  PubMed Central  Google Scholar 

Salehi BP, Sibley RC, Friedman R et al (2023) MRI of lymphedema. J Magn Reson Imaging 57:977–991

Article  PubMed  Google Scholar 

Xiong L, Engel H, Gazyakan E et al (2014) Current techniques for lymphatic imaging: State of the art and future perspectives. Ejso-Eur J Surg Onc 40:270–276

Article  CAS  Google Scholar 

Guerrini S, Gentili F, Mazzei FG, Gennaro P, Volterrani L, Mazzei MA (2020) Magnetic resonance lymphangiography: with or without contrast? Diagn Interv Radiol 26:587–595

Article  PubMed  PubMed Central  Google Scholar 

Mills M, van Zanten M, Borri M et al (2021) Systematic review of magnetic resonance lymphangiography from a technical perspective. J Magn Reson Imaging 53:1766–1790

Article  PubMed  PubMed Central  Google Scholar 

Ruehm SG, Schroeder T, Debatin JF (2001) Interstitial MR lymphography with gadoterate meglumine: Initial experience in humans. Radiology 220:816–821

Article  CAS  PubMed  Google Scholar 

Lohrmann C, Foeldi E, Speck O, Langer M (2006) High-resolution MR lymphangiography in patients with primary and secondary lymphedema. AJR Am J Roentgenol 187:556–561

Article  PubMed  Google Scholar 

Lohrmann C, Foeldi E, Langer M (2006) Indirect magnetic resonance lymphangiography in patients with lymphedema preliminary results in humans. Eur J Radiol 59:401–406

Article  PubMed  Google Scholar 

Felmerer G, Sattler T, Lohrmann C, Tobbia D (2012) Treatment of various secondary lymphedemas by microsurgical lymph vessel transplantation. Microsurg 32:171–177

Article  Google Scholar 

Mitsumori LM, McDonald ES, Neligan PC, Maki JH (2016) Peripheral magnetic resonance lymphangiography: techniques and applications. Tech Vasc Interv Radiol 19:262–272

Article  PubMed  Google Scholar 

Mitsumori LM (2016) Response: Magnetic resonance lymphangiography: How to prove it? J Magn Reson Imaging 44:1368–1369

Article  PubMed  Google Scholar 

Maki JH, Neligan PC, Briller N, Mitsumori LM, Wilson GJ (2016) Dark blood magnetic resonance lymphangiography using dual-agent relaxivity contrast (DARC-MRL): a novel method combining gadolinium and iron contrast agents. Curr Probl Diagn Radiol 45:174–179

Article  PubMed  Google Scholar 

Kobayashi H, Kawamoto S, Bernardo M, Brechbiel MW, Knopp MV, Choyke PL (2006) Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release 111:343–351

Article  CAS  PubMed  Google Scholar 

Kobayashi H, Kawamoto S, Choyke PL et al (2003) Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 50:758–766

Article  CAS  PubMed  Google Scholar 

Müller A, Fries P, Jelvani B et al (2017) Magnetic Resonance lymphography at 9.4 T using a gadolinium-based nanoparticle in rats. Invest Radiol 52:725–733

Article  PubMed  Google Scholar 

Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–649

Article  PubMed  Google Scholar 

Weinreb JC, Rodby RA, Yee J et al (2021) Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 298:28–35

Article  PubMed  Google Scholar 

Cheong BYC, Wilson JM, Preventza OA, Muthupillai R (2022) Gadolinium-based contrast agents: updates and answers to typical questions regarding gadolinium use. Tex Heart I J 49(3):e217680

Shin TH, Kim PK, Kang S et al (2021) High-resolution T(1) MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat Biomed Eng 5:252–263

Article  CAS  PubMed  Google Scholar 

Mounzer R, Shkarin P, Papademetris X, Constable T, Ruddle NH, Fahmy TM (2007) Dynamic imaging of lymphatic vessels and lymph nodes using a bimodal nanoparticulate contrast agent. Lymphat Res Biol 5:151–158

Article  PubMed  Google Scholar 

Malhotra N, Lee JS, Liman RAD et al (2020) Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules 25:3159

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turkbey B, Czarniecki M, Shih JH et al (2020) Ferumoxytol-enhanced MR lymphography for detection of metastatic lymph nodes in genitourinary malignancies: a prospective study. AJR Am J Roentgenol 214:105–113

Article  PubMed  Google Scholar 

Hamilton BE (2020) Ferumoxytol-enhanced MRI is not inferior to gadolinium-enhanced MRI in detecting intracranial metastatic disease and metastasis size. Am J Roentgenol 215:1551–1551

Article  Google Scholar 

Daldrup-Link HE, Theruvath AJ, Rashidi A et al (2022) How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 52:354–366

Article  PubMed  Google Scholar 

Werner P, Taupitz M, Schröder L, Schuenke P (2021) An NMR relaxometry approach for quantitative investigation of the transchelation of gadolinium ions from GBCAs to a competing macromolecular chelator. Sci Rep-Uk 11

留言 (0)

沒有登入
gif