Immune-related gene methylation prognostic instrument for stratification and targeted treatment of ovarian cancer patients toward advanced 3PM approach

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Devouassoux-Shisheboran M, Genestie C. Pathobiology of ovarian carcinomas. Chin J Cancer. 2015;34(1):50–5. https://doi.org/10.5732/cjc.014.10273.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta S, Nag S, Aggarwal S, Rauthan A, Warrier N. Maintenance therapy for recurrent epithelial ovarian cancer: current therapies and future perspectives - a review. J Ovarian Res. 2019;12(1):103. https://doi.org/10.1186/s13048-019-0579-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009;80(6):609–16.

PubMed  Google Scholar 

Yu L, Ding Y, Wan T, Deng T, Huang H, Liu J. Significance of CD47 and its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 2021;12: 768115. https://doi.org/10.3389/fimmu.2021.768115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usach I, Blansit K, Chen LM, Ueda S, Brooks R, Kapp DS, Chan JK. Survival differences in women with serous tubal, ovarian, peritoneal, and uterine carcinomas. Am J Obstet Gynecol. 2015;212(2):188.e1-6. https://doi.org/10.1016/j.ajog.2014.08.016.

Article  PubMed  Google Scholar 

Buys SS, Partridge E, Black A, et al. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA. 2011;305(22):2295–303. https://doi.org/10.1001/jama.2011.766.

Article  CAS  PubMed  Google Scholar 

Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30. https://doi.org/10.1126/science.aar3247.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinson C, Chatterjee R. CG methylation. Epigenomics. 2012;4(6):655–63. https://doi.org/10.2217/epi.12.55.

Article  CAS  PubMed  Google Scholar 

Comb M, Goodman HM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990;18(13):3975–82. https://doi.org/10.1093/nar/18.13.3975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark SJ, Harrison J, Molloy PL. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene. 1997;195(1):67–71. https://doi.org/10.1016/s0378-1119(97)00164-9.

Article  CAS  PubMed  Google Scholar 

Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64(6):1123–34. https://doi.org/10.1016/0092-8674(91)90267-3.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Ng HH, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999;13(15):1924–35. https://doi.org/10.1101/gad.13.15.1924.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9. https://doi.org/10.1038/30764.

Article  CAS  PubMed  Google Scholar 

Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.

CAS  PubMed  Google Scholar 

Xing XB, Cai WB, Liang L, et al. The prognostic value of p16 hypermethylation in cancer: a meta-analysis. Plos One. 2013;8. https://doi.org/10.1371/journal.pone.0066587.

Lahtz C, Pfeifer GP. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011;3(1). https://doi.org/10.1093/jmcb/mjq053.

Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Therapeutics. 2017;173:118–34. https://doi.org/10.1016/j.pharmthera.2017.02.011.

Article  CAS  Google Scholar 

Li QL, Kim HR, Kim WJ, et al. Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Bioch Biophys Res Commun. 2004;314(1):223–8. https://doi.org/10.1016/j.bbrc.2003.12.079.

Article  CAS  Google Scholar 

Costa FF, Paixao VA, Cavalher FP, et al. SATR-1 hypomethylation is a common and early event in breast cancer. Cancer Genetics Cytogenetics. 2006;165(2):135–43. https://doi.org/10.1016/j.cancergencyto.2005.07.023.

Article  CAS  PubMed  Google Scholar 

Widschwendter M, Jiang G, Woods C, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res. 2004;64(13):4472–80. https://doi.org/10.1158/0008-5472.CAN-04-0238.

Article  CAS  PubMed  Google Scholar 

Widschwendter M, Siegmund KD, Müller HM, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004;64(11):3807–13. https://doi.org/10.1158/0008-5472.CAN-03-3852.

Article  CAS  PubMed  Google Scholar 

Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66(17):8462–9468. https://doi.org/10.1158/0008-5472.CAN-06-0293.

Article  CAS  PubMed  Google Scholar 

Qian ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, Mizusawa N, Kudo E. Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol. 2007;20(12):1269–77. https://doi.org/10.1038/modpathol.3800965.

Article  CAS  PubMed  Google Scholar 

Milicic A, Harrison LA, Goodlad RA, et al. Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res. 2008;68(19):7760–8. https://doi.org/10.1158/0008-5472.CAN-08-0020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paredes J. P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Res. 2005;11(16):5869–77. https://doi.org/10.1158/1078-0432.CCR-05-0059.

Article  CAS  Google Scholar 

Ribeiro AS, Albergaria A, Sousa B, et al. Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene. 2010;29(3):392–402. https://doi.org/10.1038/onc.2009.338.

Article  CAS  PubMed  Google Scholar 

Li T, Li Y, Gan Y, et al. Methylation-mediated repression of MiR-424/503 cluster promotes proliferation and migration of ovarian cancer cells through targeting the hub gene KIF23. Cell Cycle. 2019;18(14):1601–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125(11):2737–43. https://doi.org/10.1002/ijc.24638.

Article  CAS  PubMed  Google Scholar 

He Y, Cui Y, Wang W, et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-miR-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia. 2011;13(9):841–53. https://doi.org/10.1593/neo.11698.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minor J, Wang X, Zhang F, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol. 2011;48(1):73–8. https://doi.org/10.1016/j.oraloncology.2011.11.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simonini P, Breiling A, Gupta N, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70(22):9175–84. https://doi.org/10.1158/0008-5472.CAN-10-1318.

Article  CAS  Google Scholar 

Soto-Reyes E, Gonzalez-Barrios R, Cisneros-Soberanis F, et al. Disruption of CTCF at the miR-125b1 locus in gynecological cancers. BMC Cancer. 2012;12(1):40. https://doi.org/10.1186/1471-2407-12-40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan F, Shen N, Pang J, Molina JR, Yang P, Liu S. The DNA methyltransferase DNMT1 and tyrosine-protein kinase KIT cooperatively promote resistance to 5-Aza-2’-deoxycytidine (Decitabine) and Midostaurin (PKC412) in lung cancer cells. J Biol Chem. 2015;290(30):18480–94. https://doi.org/10.1074/jbc.

Article  PubMed  PubMed Central  Google Scholar 

Yang X, Han H, De Carvalho DD, et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90. https://doi.org/10.1016/j.ccr.2014.07.028

留言 (0)

沒有登入
gif