Boutari CSM, Chrysoula. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;155217. https://doi.org/10.1016/j.metabol.2022.155217.
Lustig M, Collier RH, Kassotis D, Roepke C, Kim TA, Blanc MJ, Barouki E, Bansal R, Cave A, Chatterjee MC, S. and, Choudhury. Obesity I: overview and molecular and biochemical mechanisms. Biochem Pharmacol. 2022;115012. https://doi.org/10.1016/j.bcp.2022.115012.
Hoffman DJ, Powell TL, Barrett ES, Hardy DB. DEVELOPMENTAL ORIGINS OF METABOLIC DISEASES. Physiol Rev. 2021;101(3). https://doi.org/10.1152/physrev.00002.2020.
Caballero B. Humans against Obesity: Who Will Win? in Advances in Nutrition, 2019, vol. 10, https://doi.org/10.1093/advances/nmy055
Mahase E. Global cost of overweight and obesity will hit $4.32tn a year by 2035, report warns. BMJ. 2023;380. https://doi.org/10.1136/bmj.p523.
Kaushik AM, Juste S, Lindenau YR, Dong K, Macho-González S, Santiago-Fernández A, McCabe O, Singh M, Gavathiotis R, E. and, Cuervo. Chaperone-mediated autophagy regulates adipocyte differentiation. Sci Adv. 2022;8(46). https://doi.org/10.1126/sciadv.abq2733. p. p.eabq2733.
Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and Metabolic Syndrome, Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 1. 2004, https://doi.org/10.1161/01.ATV.0000099786.99623.EF
Korac A, et al. Adipokine signatures of subcutaneous and visceral abdominal fat in normal-weight and obese women with different metabolic profiles. Arch Med Sci. 2021;17(2). https://doi.org/10.5114/aoms/92118.
Chait LJ, A. and, Hartigh D. Adipose tissue distribution. Front Cardiovasc Med. 2020;7(22). https://doi.org/10.3389/fcvm.2020.00022.
Saely H, Geiger CH, K. and, Drexel. Brown versus White Adipose tissue: a Mini-review. Gerontology. 2012. https://doi.org/10.1159/000321319.
Ziegler AK, et al. An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Sci Rep. 2019;9(1). https://doi.org/10.1038/s41598-019-48587-2.
Clemente-Suárez VJ, et al. The role of Adipokines in Health and Disease. Biomedicines. 2023;11(5). https://doi.org/10.3390/biomedicines11051290.
Kahn D, et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: implications for metabolic disease. Endocrinol (United States). 2022;163(11). https://doi.org/10.1210/endocr/bqac140.
He C, Wang T, Li S, Shen S, Hou H, Liu L, Wei Y, Xie Y, Zhang F, Zhao Z, Z. and, Mo. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. Iscience. 2023. https://doi.org/10.1016/j.isci.2023.106289.
Article PubMed PubMed Central Google Scholar
Kamiya T, Hara H, Inagaki N, Adachi T. The effect of hypoxia mimetic cobalt chloride on the expression of EC-SOD in 3T3-L1 adipocytes. Redox Rep. 2010;15(3). https://doi.org/10.1179/174329210X12650506623483.
Liu Z, Wu KKL, Jiang X, Xu A, Cheng KKY. The role of adipose tissue senescence in obesityand ageing-related metabolic disorders. Clin Sci. 2020;134(2). https://doi.org/10.1042/CS20190966.
Longo M, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20(9). https://doi.org/10.3390/ijms20092358.
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol. 2021;192. https://doi.org/10.1016/j.bcp.2021.114723.
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1). https://doi.org/10.1172/JCI29881.
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2). https://doi.org/10.1038/nri2921.
Song X, Wu H, Zhang W, Wang B, Sun H. Equations for predicting DXA-measured visceral adipose tissue mass based on BMI or weight in adults. Lipids Health Dis. 2022;21(1). https://doi.org/10.1186/s12944-022-01652-8.
Marques AP, Rosmaninho-Salgado J, Estrada M, Cortez V, Nobre RJ, Cavadas C. Hypoxia mimetic induces lipid accumulation through mitochondrial dysfunction and stimulates autophagy in murine preadipocyte cell line. Biochim Biophys Acta - Gen Subj. 2017;1861(3). https://doi.org/10.1016/j.bbagen.2016.12.005.
Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014;28(2). https://doi.org/10.1101/gad.235184.113.
Polonis K, et al. Chronic intermittent hypoxia triggers a senescence-like phenotype in Human White preadipocytes. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-63761-7.
Murakami T, Inagaki N, Kondoh H. Cellular Senescence in Diabetes Mellitus: distinct senotherapeutic strategies for adipose tissue and pancreatic β cells. Front Endocrinol. 2022;13. https://doi.org/10.3389/fendo.2022.869414.
Mitterberger MC, Lechner S, Mattesich M, Zwerschke W. Adipogenic differentiation is impaired in replicative senescent human subcutaneous adipose-derived stromal/progenitor cells. Journals Gerontol - Ser Biol Sci Med Sci. 2014;69(1). https://doi.org/10.1093/gerona/glt043.
Debacq-Chainiaux F, Pascal T, Boilan E, Bastin C, Bauwens E, Toussaint O. Screening of senescence-associated genes with specific DNA array reveals the role of IGFBP-3 in premature senescence of human diploid fibroblasts. Free Radic Biol Med. 2008;44(10). https://doi.org/10.1016/j.freeradbiomed.2008.02.001.
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185(3). https://doi.org/10.1016/j.cell.2021.12.016.
Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12). https://doi.org/10.1038/nprot.2009.191.
van Vliet T, et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell. 2021;81(9). https://doi.org/10.1016/j.molcel.2021.03.018.
Goldman B, Radnaa E, Kechichian T, Menon R. Silencing P38 MAPK reduces cellular senescence in human fetal chorion trophoblast cells. Am J Reprod Immunol. 2023;89(1). https://doi.org/10.1111/aji.13648.
Blagosklonny MV. Cell senescence, rapamycin and hyperfunction theory of aging. Cell Cycle. 2022;21:14. https://doi.org/10.1080/15384101.2022.2054636.
Herranz N, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015;17(9). https://doi.org/10.1038/ncb3225.
Taylor X, Kim E, Zhang Y, Chau K, Nguyen L, Rayalam BC, S. and, Wang. Antiaging mechanism of natural compounds: effects on Autophagy and oxidative stress. Molecules. 2022;27(14):4396. https://doi.org/10.3390/molecules27144396.
Article CAS PubMed PubMed Central Google Scholar
Xu M et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age, Proc. Natl. Acad. Sci. U. S. A, vol. 112, no. 46, 2015, https://doi.org/10.1073/pnas.1515386112
Kumar R, Sharma A, Kumari A, Gulati A, Padwad Y, Sharma R. Epigallocatechin gallate suppresses premature senescence of preadipocytes by inhibition of PI3K/Akt/mTOR pathway and induces senescent cell death by regulation of Bax/Bcl-2 pathway. Biogerontology. 2019;20(2). https://doi.org/10.1007/s10522-018-9785-1.
Tuttle CSL, Waaijer MEC, Slee-Valentijn MS, Stijnen T, Westendorp R, Maier AB. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell. 2020;19(2). https://doi.org/10.1111/acel.13083.
Cartwright MJ, et al. Aging, depot origin, and preadipocyte gene expression. Journals Gerontol - Ser Biol Sci Med Sci. 2010;65 A(3). https://doi.org/10.1093/gerona/glp213.
Varghese K, Song M, J. and, Singer. Age and sex: impact on adipose tissue metabolism and inflammation. Mech Ageing Dev. 2021;199:111563. https://doi.org/10.1016/j.mad.2021.111563.
Article CAS PubMed PubMed Central Google Scholar
Parvizi M, Ryan ZC, Ebtehaj S, Arendt BK, Lanza IR. The secretome of senescent preadipocytes influences the phenotype and function of cells of the vascular wall. Biochim Biophys Acta - Mol Basis Dis. 2021;1867(1). https://doi.org/10.1016/j.bbadis.2020.165983.
Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 2022;13(4). https://doi.org/10.1038/s41419-022-04752-6.
Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells. 2019;8(11). https://doi.org/10.3390/cells8111383.
da Silva A, de Piccinato C, Sardinha LR, Aloia TPA, Goldberg AC. Comparison of senescence progression in mesenchymal cells from human umbilical cord walls measured by immunofluorescence and flow cytometry of p16 and p21. Einstein (Sao Paulo). 2020;18. https://doi.org/10.31744/einstein_journal/2020AO5236.
Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. Pathobiol Aging Age-related Dis. 2015;5(1). https://doi.org/10.3402/pba.v5.27743.
Conley SM, et al. Human Obesity Induces Dysfunction and early senescence in adipose tissue-derived mesenchymal Stromal/Stem cells. Front Cell Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.00197.
Xu M et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age, Elife, vol. 4, no. DECEMBER2015, 2015, https://doi.org/10.7554/eLife.12997
Lilja S et al. Epigallocatechin Gallate Effectively Affects Senescence and Anti-SASP via SIRT3 in 3T3-L1 Preadipocytes in Comparison with Other Bioactive Substances, Oxid. Med. Cell. Longev, vol. 2020, 2020, https://doi.org/10.1155/2020/4793125
Lee W, Kim G, Jang YY, Han H, Nahmgoong JS, Park H, Han YJ, Cho SM, Lim C, Noh S, J.R. and, Oh. SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab. 2022;34(5):702–18. https://doi.org/10.1016/j.cmet.2022.03.010.
Article CAS PubMed Google Scholar
Chen X, Feng J, Chang Q, Lu F, Yuan Y. Senescence of donor cells impairs fat graft regeneration by suppressing adipogenesis and increasing expression of senescence-associated secretory phenotype factors. Stem Cell Res Ther. 2021;12(1). https://doi.org/10.1186/s13287-021-02383-w.
Gao H, et al. Role of hypoxia in cellular senescence. Pharmacol Res. 2023;194. https://doi.org/10.1016/j.phrs.2023.106841.
Poblete JMS, et al. Macrophage HIF-1α mediates obesity-related adipose tissue dysfunction via interleukin-1 receptor-associated kinase M. Am J Physiol - Endocrinol Metab. 2020;318(5). https://doi.org/10.1152/ajpendo.00174.2019.
Sharma M, et al. Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-62272-9.
Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: Hypoxia hypothesis, in Advances in Experimental Medicine and Biology, vol. 960, 2017.
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12). https://doi.org/10.1002/jcb.30344.
Sun K, Li X, Scherer PE. Extracellular matrix (ECM) and fibrosis in adipose tissue: overview and perspectives. Compr Physiol. 2023;13(1). https://doi.org/10.1002/cphy.c220020.
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim et Biophys Acta - Bioenergetics. 2010;1797:6–7. https://doi.org/10.1016/j.bbabio.2010.02.011.
Kim JH, et al. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation. Cell Biol Int. 2014;38(1). https://doi.org/10.1002/cbin.10170.
Lee YS, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6). https://doi.org/10.1016/j.cell.2014.05.012.
Varela-Guruceaga MMilagro FMartínez, Miguel J. C, Effect of hypoxia on caveolae-related protein expression and insulin signaling in adipocytes, 473, 2018, https://doi.org/10.1016/j.mce.2018.01.026
Zoico E, et al. Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep. 2021;11(1). https://doi.org/10.1038/s41598-021-02544-0.
Regazzetti C, et al. Hypoxia inhibits cavin-1 and cavin-2 expression and down-regulates caveolae in adipocytes. Endocrinol (United States). 2015;156(3). https://doi.org/10.1210/en.2014-1656.
Li C, et al. Rapamycin promotes the survival and adipogenesis of ischemia-challenged adipose derived stem cells by improving Autophagy. Cell Physiol Biochem. 2018;44(5). https://doi.org/10.1159/000485783.
Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in human abdominal obesity: role of wnt, tumor necrosis factor-α, and inflammation. Diabetes. 2009;58(7). https://doi.org/10.2337/db08-1770.
Pietrocola F, Bravo-San JM, Pedro. Targeting autophagy to counteract obesity-associated oxidative stress. Antioxidants. 2021;10(1). https://doi.org/10.3390/antiox10010102.
Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39. https://doi.org/10.1016/j.immuni.2013.07.017. no. 2.
Füllgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014;15(1). https://doi.org/10.1038/nrm3716.
Caramés B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. 2015;67(6). https://doi.org/10.1002/art.39073.
Gianazza E, Brioschi M, Eligini S, Banfi C. Mass spectrometry for the study of adipocyte cell secretome in cardiovascular diseases. Mass Spectrom Rev. 2022. https://doi.org/10.1002/mas.21812.
A. J. Braga Osorio Gomes Salgado et al., Adipose Tissue Derived Stem Cells Secretome: Soluble Factors and Their Roles in Regenerative Medicine, Curr. Stem Cell Res. Ther, vol. 5, no. 2, 2010, https://doi.org/10.2174/157488810791268564
Quan W, Jung HS, Lee MS. Role of autophagy in the progression from obesity to diabetes and in the control of energy balance. Arch Pharm Res. 2013;36(2). https://doi.org/10.1007/s12272-013-0024-7.
Schosserer M, Grillari J, Wolfrum C, Scheideler M. Age-Induced changes in White, Brite, and Brown Adipose depots: a Mini-review. Gerontology. 2018;64(3). https://doi.org/10.1159/000485183.
de Magalhães JP, Passos JF. Stress, cell senescence and organismal ageing. Mech Ageing Dev. 2018;170. https://doi.org/10.1016/j.mad.2017.07.001.
Umar AK. Stem cell’s Secretome Delivery systems. Adv Pharm Bull. 2023;13. https://doi.org/10.34172/apb.2023.027. no. 2.
Zhou X, et al. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Experimental Clin Cancer Res. 2022;41(1). https://doi.org/10.1186/s13046-022-02408-z.
Trayhurn P. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2022;127(2). https://doi.org/10.1017/S0007114521003962.
Heilbronn L, Campbell L. Adipose tissue macrophages, low Grade inflammation and insulin resistance in human obesity. Curr Pharm Des. 2008;14(12). https://doi.org/10.2174/138161208784246153.
Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metabol. 2013;17. https://doi.org/10.1016/j.cmet.2013.05.008. no. 6.
Vitseva OI, et al. Inducible toll-like receptor and NF-κB regulatory pathway expression in human adipose tissue. Obesity. 2008;16(5). https://doi.org/10.1038/oby.2008.25.
Pham DV, Nguyen TK, Park PH. Adipokines at the crossroads of obesity and mesenchymal stem cell therapy. Experimental Mol Med. 2023;55(2). https://doi.org/10.1038/s12276-023-00940-2.
Bonnet M, Kaspric N, Vonnahme K, Viala D, Chambon C, Picard B. Prediction of the secretome and the surfaceome: a strategy to decipher the crosstalk between adipose tissue and muscle during fetal growth. Int J Mol Sci. 2020;21(12). https://doi.org/10.3390/ijms21124375.
Singh R, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242). https://doi.org/10.1038/nature07976.
Feijóo-Bandín S, et al. Adipokines and inflammation: focus on cardiovascular diseases. Int J Mol Sci. 2020;21(20). https://doi.org/10.3390/ijms21207711.
Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21(4). https://doi.org/10.3390/ijms21041219.
Myeong JY, Gha YL, Chung JJ, Young HA, Seung HH, Jae BK. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor. Diabetes. 2006;55(9). https://doi.org/10.2337/db05-1322.
Pan J, et al. Autophagy participants in the dedifferentiation of mouse 3T3-L1 adipocytes triggered by hypofunction of insulin signaling. Cell Signal. 2021;80. https://doi.org/10.1016/j.cellsig.2020.109911.
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7). https://doi.org/10.1038/nri.2016.58.
Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.591803.
Weigert J, et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabet
留言 (0)