A signaling network map of Lipoxin (LXA4): an anti-inflammatory molecule

Romano M, Recchia I, Recchiuti A. Lipoxin receptors. Sci World J. 2007;7:1393–412. https://doi.org/10.1100/tsw.2007.186.

Article  CAS  Google Scholar 

Ryan A, Godson C. Lipoxins: regulators of resolution. Curr Opin Pharmacol. 2010;10:166–72. https://doi.org/10.1016/j.coph.2010.02.005.

Article  CAS  PubMed  Google Scholar 

Serhan CN, Hamberg M, Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun. 1984;118:943–9. https://doi.org/10.1016/0006-291x(84)91486-4.

Article  CAS  PubMed  Google Scholar 

Godson C, Guiry P, Brennan E. Lipoxin mimetics and the resolution of inflammation. Annu Rev Pharmacol Toxicol. 2013;63:429–48. https://doi.org/10.1146/annurev-pharmtox-051921-085407.

Article  CAS  Google Scholar 

Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73:141–62. https://doi.org/10.1016/j.plefa.2005.05.002.

Article  CAS  PubMed  Google Scholar 

Chiang N, Serhan CN, Dahlen SE, et al. The lipoxin receptor ALX: potent ligand-specific and stereoselectiveactions in vivo. Pharmacol Rev. 2006;58:463–87. https://doi.org/10.1124/pr.58.3.4.

Article  CAS  PubMed  Google Scholar 

Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol. 2016;785:144–55. https://doi.org/10.1016/j.ejphar.2015.11.001.

Article  CAS  PubMed  Google Scholar 

Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20:6008. https://doi.org/10.3390/ijms20236008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu T, Mohan M, Brennan EP, et al. Therapeutic potential of Lipoxin A4 in chronic inflammation: focus on cardiometabolic disease. ACS Pharmacol Transl Sci. 2020;3:43–55. https://doi.org/10.1021/acsptsci.9b00097.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandrasekharan JA, Sharma-Walia N. Lipoxins: nature’s way to resolve inflammation. J Inflamm Res. 2015;8:181–92. https://doi.org/10.2147/JIR.S90380.

Article  PubMed  PubMed Central  Google Scholar 

Jaen RI, Sanchez-Garcia S, Fernandez-Velasco M, et al. Resolution-based therapies: the potential of lipoxins to treat human diseases. Front Immunol. 2021;12: 658840. https://doi.org/10.3389/fimmu.2021.658840.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramon S, Bancos S, Serhan CN, et al. Lipoxin A4 modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism. Eur J Immunol. 2014;44:357–69. https://doi.org/10.1002/eji.201343316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews D, Godson C. Lipoxins and synthetic lipoxin mimetics: therapeutic potential in renal diseases. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866: 158940. https://doi.org/10.1016/j.bbalip.2021.158940.

Article  CAS  PubMed  Google Scholar 

Prieto P, Cuenca J, Través PG, et al. Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ. 2010;17:1179–88. https://doi.org/10.1038/cdd.2009.220.

Article  CAS  PubMed  Google Scholar 

Zhou Y, You H, Zhang A, et al. Lipoxin A4 attenuates uric acid-activated, NADPH oxidase-dependent oxidative stress by interfering with translocation of p47phox in human umbilical vein endothelial cells. Exp Ther Med. 2020;20:1682–92. https://doi.org/10.3892/etm.2020.8812.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu L, Li HH, Wu Q, et al. Lipoxin A4 activates Nrf2 pathway and ameliorates cell damage in cultured cortical astrocytes exposed to oxygen-glucose deprivation/reperfusion insults. J Mol Neurosci. 2015;56:848–57. https://doi.org/10.1007/s12031-015-0525-6.

Article  CAS  PubMed  Google Scholar 

Yang S, Zheng Y, Hou X. Lipoxin A4 restores oxidative stress-induced vascular endothelial cell injury and thrombosis-related factor expression by its receptor-mediated activation of Nrf2-HO-1 axis. Cell Signal. 2019;60:146–53. https://doi.org/10.1016/j.cellsig.2019.05.002.

Article  CAS  PubMed  Google Scholar 

Urbach V, Higgins G, Buchanan P, et al. The role of Lipoxin A4 in cystic fibrosis lung disease. Comput Struct Biotechnol J. 2013;6: e201303018. https://doi.org/10.5936/csbj.201303018.

Article  PubMed  PubMed Central  Google Scholar 

Higgins G, Ringholz F, Buchanan P, et al. Physiological impact of abnormal lipoxin A4 production on cystic fibrosis airway epithelium and therapeutic potential. Biomed Res Int. 2015;2015: 781087. https://doi.org/10.1155/2015/781087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higgins G, Fustero Torre C, Tyrrell J, et al. Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2016;310:L1053–61. https://doi.org/10.1152/ajplung.00368.2015.

Article  PubMed  Google Scholar 

Higgins G, Buchanan P, Perriere M, et al. Activation of P2RY11 and ATP release by Lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol. 2014;51:178–90. https://doi.org/10.1165/rcmb.2012-0424OC.

Article  CAS  PubMed  Google Scholar 

Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 2010;11:R3. https://doi.org/10.1186/gb-2010-11-1-r3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kandasamy K, Keerthikumar S, Raju R, et al. PathBuilder–open source software for annotating and developing pathway resources. Bioinformatics. 2009;25(21):2860–2. https://doi.org/10.1093/bioinformatics/btp453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kutmon M, van Iersel MP, Bohler A, et al. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol. 2015;11: e1004085. https://doi.org/10.1371/journal.pcbi.1004085.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karaca ZM, Kurtoglu EL, Gul M, et al. Influence of lipoxin-A4 treatment on cytokine, chemokine genes expression, and phenotypic distribution of lymphocyte subsets during experimental liver fibrosis. Eurasian J Med. 2022;54:27–35. https://doi.org/10.5152/eurasianjmed.2022.20030.

Article  CAS  PubMed  Google Scholar 

Li QQ, Ding DH, Wang XY, et al. Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway. Exp Neurol. 2021;339: 113645. https://doi.org/10.1016/j.expneurol.2021.113645.

Article  CAS  PubMed  Google Scholar 

Christophe T, Karlsson A, Rabiet MJ, et al. Phagocyte activation by Trp-Lys-Tyr-Met-Val-Met, acting through FPRL1/LXA4R, is not affected by Lipoxin A4. Scand J Immunol. 2002;56:470–6. https://doi.org/10.1046/j.1365-3083.2002.01149.x.

Article  CAS  PubMed  Google Scholar 

Guo Z, Hu Q, Xu L, et al. Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38 MAPK signaling pathway in subarachnoid hemorrhage rats. Stroke. 2016;47:490–7. https://doi.org/10.1161/STROKEAHA.115.011223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mai J, Liu W, Fang Y, et al. The atheroprotective role of lipoxin A(4) prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis. 2018;278:259–68. https://doi.org/10.1016/j.atherosclerosis.2018.09.025.

Article  CAS  PubMed  Google Scholar 

Shi Y, Pan H, Zhang HZ, et al. Lipoxin A4 mitigates experimental autoimmune myocarditis by regulating inflammatory response, NF-kappaB and PI3K/Akt signaling pathway in mice. Eur Rev Med Pharmacol Sci. 2017;21:1850–9.

CAS  PubMed  Google Scholar 

Borgeson E, McGillicuddy FC, Harford KA, et al. Lipoxin A4 attenuates adipose inflammation. FASEB J. 2012;26:4287–94. https://doi.org/10.1096/fj.12-208249.

Article  CAS  PubMed  Google Scholar 

Liu L, Zhang P, Zhang Z, et al. LXA4 ameliorates cerebrovascular endothelial dysfunction by reducing acute inflammation after subarachnoid hemorrhage in rats. Neuroscience. 2019;408:105–14. https://doi.org/10.1016/j.neuroscience.2019.03.038.

Article  CAS  PubMed  Google Scholar 

Zhu JJ, Yu BY, Fu CC, et al. LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IkappaB/NF-kappaB pathway. Int Immunopharmacol. 2020;89: 107095. https://doi.org/10.1016/j.intimp.2020.107095.

留言 (0)

沒有登入
gif