A single dose of angiotensin-(1–7) resolves eosinophilic inflammation and protects the lungs from a secondary inflammatory challenge

Felton JM, Lucas CD, Rossi AG, Dransfield I. Eosinophils in the lung—modulating apoptosis and efferocytosis in airway inflammation. Front Immunol. 2014;1:5.

Google Scholar 

Feehan KT, Gilroy DW. Is resolution the end of inflammation? Trends Mol Med. 2019;25(3):198–214.

Article  CAS  PubMed  Google Scholar 

Levy BD, Vachier I, Serhan CN. Resolution of inflammation in asthma. Clin Chest Med. 2012;33(3):559–70.

Article  PubMed  PubMed Central  Google Scholar 

Motwani MP, Newson J, Kwong S, Richard-Loendt A, Colas R, Dalli J, et al. Prolonged immune alteration following resolution of acute inflammation in humans. PLoS ONE. 2017;12(10):1.

Article  Google Scholar 

Newson J, Motwani MP, Kendall AC, Nicolaou A, Muccioli GG, Alhouayek M, et al. Inflammatory resolution triggers a prolonged phase of immune suppression through COX-1/mPGES-1-derived prostaglandin E2. Cell Rep. 2017;20(13):3162–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levy BD, Bonnans C, Silverman ES, Palmer LJ, Marigowda G, Israel E. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med. 2005;172(7):824–30.

Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Boyanapalli R, Goleva E, Kolakowski C, Min E, Day B, Donald YML, et al. Obesity impairs apoptotic cell clearance in asthma. J Allergy Clin Immunol. 2013;131(4):1041–7.

Article  CAS  PubMed  Google Scholar 

Duncan CJA, Lawrie A, Blaylock MG, Douglas JG, Walsh GM. Reduced eosinophil apoptosis in induced sputum correlates with asthma severity. Eur Respir J. 2003;22(3):484–90.

Article  CAS  PubMed  Google Scholar 

Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2014;16(1):45–56.

Article  Google Scholar 

Hekking PPW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135(4):896–902.

Article  PubMed  Google Scholar 

Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH. Interleukin-13—induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2010;43(6):652–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis MF, Peng RD, McCormack MC, Matsui EC. Staphylococcus aureus colonization is associated with wheeze and asthma among US children and young adults. J Allergy Clin Immunol. 2015;135(3):811–3.

Article  PubMed  Google Scholar 

Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Investig. 1999;104(1):123–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sousa LP, Pinho V, Teixeira MM. Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID-19? Br J Pharmacol. 2020;177(17):3898–904.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregório JF, da Rodrigues-Machado MG, Santos RAS, Carvalho-Ribeiro IA, Nunes OM, Oliveira IFA, et al. Asthma: role of the angiotensin-(1–7)/Mas (MAS1) pathway in pathophysiology and therapy. Br J Pharmacol. 2021;178(22):4428–39.

Article  PubMed  Google Scholar 

Magalhães GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregório JF, Motta-Santos D, et al. Angiotensin-(1–7) promotes resolution of eosinophilic inflammation in an experimental model of asthma. Front Immunol. 2018;9:1.

Article  Google Scholar 

Magalhães GS, Gregório JF, Cançado Ribeiro ATP, Baroni IF, de Vasconcellos AVO, Nakashima GP, et al. Oral formulation of angiotensin-(1–7) promotes therapeutic actions in a model of eosinophilic and neutrophilic asthma. Front Pharmacol. 2021;12:557962.

Article  PubMed  PubMed Central  Google Scholar 

Magalhães GS, Gregório JF, Ramos KM, Tonani A, Baroni IF, Barcelos LS, et al. Treatment with inhaled formulation of angiotensin-(1–7) reverses inflammation and pulmonary remodeling in a model of chronic asthma. Immunobiology. 2020;225(3):151957–67.

Article  PubMed  Google Scholar 

Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Alenina N, Bader M, Santos RA, et al. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1–7) Mas receptor knockout mice. Am J Physiol Lung Cell Mol Physiol. 2016;2016:1.

Google Scholar 

Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Silva AR, Caliari MV, Prata LO, et al. Angiotensin-(1–7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br J Pharmacol. 2015;2015:1.

Google Scholar 

Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello ML, Marques FD, Pereira JM, Lautner RQ, Santos RA, Campagnole-Santos MJ. AVE 0991, a non-peptide mimic of angiotensin-(1–7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol. 2013;170(4):835–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Hashim AZ, Renno WM, Raghupathy R, Abduo HT, Akhtar S, Benter IF. Angiotensin-(1–7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br J Pharmacol. 2012;166(6):1964–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Hashim AZ, Khajah MA, Babyson RS, Renno WM, Ezeamuzie CI, Benter IF, et al. Ang-(1–7)/MAS1 receptor axis inhibits allergic airway inflammation via blockade of Src-mediated EGFR transactivation in a murine model of asthma. PLoS ONE. 2019;2019:1.

Google Scholar 

Barroso LC, Magalhaes GS, Galvão I, Reis AC, Souza DG, Sousa LP, et al. Angiotensin-(1–7) promotes resolution of neutrophilic inflammation in a model of antigen-induced arthritis in mice. Front Immunol. 2017;2017:1.

Google Scholar 

Gregorio JF, Magalhães GS, Rodrigues-Machado MG, Gonzaga KER, Motta-Santos D, Cassini-Vieira P, Barcelos LS, Vieira MAR, Santos RAS, Campagnole-Santos MJ. Angiotensin-(1-7)/mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation. Life Sci. 2021;1(282):119792–802.

Article  Google Scholar 

Zaidan I, Tavares LP, Sugimoto MA, Lima KM, Negreiros-Lima GL, Teixeira LCR, et al. Angiotensin-(1–7)/MasR axis promotes migration of monocytes/macrophages with a regulatory phenotype to perform phagocytosis and efferocytosis. JCI Insight. 2022;2022:1.

Google Scholar 

Vago JP, Tavares LP, Garcia CC, Lima KM, Perucci LO, Vieira ÉL, et al. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. J Immunol. 2015;2015:1.

Google Scholar 

Do Camargo LN, Righetti RF, De Almeida FM, Dos Santos TM, Fukuzaki S, Martins NAB, et al. Modulating asthma-COPD overlap responses with IL-17 inhibition. Front Immunol. 2023;2023:1.

Google Scholar 

Felix FB, Vago JP, de Fernandes DO, Martins DG, Moreira IZ, Gonçalves WA, et al. Biochanin a regulates key steps of inflammation resolution in a model of antigen-induced arthritis via GPR30/PKA-dependent mechanism. Front Pharmacol. 2021;12:1.

Article  Google Scholar 

Harju TH. Pathogenic bacteria and viruses in induced sputum or pharyngeal secretions of adults with stable asthma. Thorax. 2006;61(7):579–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98(1):505–53.

Article  CAS  PubMed  Google Scholar 

Hartl D, Koller B, Mehlhorn AT, Reinhardt D, Nicolai T, Schendel DJ, et al. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol. 2007;119(5):1258–66.

Article  CAS  PubMed  Google Scholar 

Raeiszadeh Jahromi S, Mahesh PA, Jayaraj BS, Madhunapantula SRV, Holla AD, Vishweswaraiah S, et al. Serum levels of IL-10, IL-17F and IL-33 in patients with asthma: a case–control study. J Asthma. 2014;51(10):1004–13.

Article  CAS  PubMed  Google Scholar 

Kearley J, Barker JE, Robinson DS, Lloyd CM. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J Exp Med. 2005;202(11):1539–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Qian YY, Chai SJ, Liang ZY, Xu Q, Wu ZQ, et al. Enhanced local Foxp3 expression in lung tissue attenuates airway inflammation in a mouse model of asthma. J Asthma. 2014;51(5):451–8.

Article  CAS  PubMed  Google Scholar 

Lu Y, Guo Y, Xu L, Li Y, Cao L. Foxp3 regulates ratio of Treg and NKT cells in a mouse model of asthma. Mol Cell Biochem. 2015;403(1–2):25–31.

Article  CAS  PubMed  Google Scholar 

Huynh MLN, Malcolm KC, Kotaru C, Tilstra JA, Westcott JY, Fadok VA, et al. Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med. 2005;172(8):972–9.

Article  PubMed  Google Scholar 

Proto JD, Doran AC, Gusarova G, Yurdagul A, Sozen E, Subramanian M, et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity. 2018;2018:1.

Google Scholar 

Bjerregaard A, Laing IA, Backer V, Sverrild A, Khoo SK, Chidlow G, et al. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: a prospective cohort study. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2017;2017:1.

Google Scholar 

Gelb AF, Flynn Taylor C, Shinar CM, Gutierrez C, Zamel N. Role of spirometry and exhaled nitric oxide to predict exacerbations in treated asthmatics. Chest. 2006;129(6):1492–9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif