A Pfs48/45-based vaccine to block Plasmodium falciparum transmission: phase 1, open-label, clinical trial

Blagborough AM, Churcher TS, Upton LM, Ghani AC, Gething PW, Sinden RE. Transmission-blocking interventions eliminate malaria from laboratory populations. Nat Commun. 2013;4(1):1812.

Article  CAS  PubMed  Google Scholar 

Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: an updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14(11):e1002456.

Article  PubMed  PubMed Central  Google Scholar 

Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7(8):e1000324.

Article  PubMed  PubMed Central  Google Scholar 

Sauerwein RW, Bousema T. Transmission blocking malaria vaccines: assays and candidates in clinical development. Vaccine. 2015;33(52):7476–82.

Article  CAS  PubMed  Google Scholar 

Targett GA, Greenwood BM. Malaria vaccines and their potential role in the elimination of malaria. Malar J. 2008;7(1):S10.

Article  PubMed  PubMed Central  Google Scholar 

Duffy PE. Transmission-blocking vaccines: harnessing herd immunity for malaria elimination. Expert Rev Vaccines. 2021;20(2):185–98.

Article  CAS  PubMed  Google Scholar 

Healy SA, Anderson C, Swihart BJ, Mwakingwe A, Gabriel EE, Decederfelt H, et al. Pfs230 yields higher malaria transmission-blocking vaccine activity than Pfs25 in humans but not mice. J Clin Investig. 2021;131(7):e146221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sagara I, Healy SA, Assadou MH, Kone M, Swihart BJ, Kwan JL, et al. Malaria transmission-blocking vaccines Pfs230D1-EPA and Pfs25-EPA in Alhydrogel in healthy Malian adults; a phase 1, randomised, controlled trial. Lancet Infect Dis. 2023;23(11):1266–79.

Article  CAS  PubMed  Google Scholar 

van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell. 2001;104(1):153–64.

Article  PubMed  Google Scholar 

Fabra-Garcia A, Hailemariam S, de Jong RM, Janssen K, Teelen K, van de Vegte-Bolmer M, et al. Highly potent, naturally acquired human monoclonal antibodies against Pfs48/45 block Plasmodium falciparum transmission to mosquitoes. Immunity. 2023;56(2):406-19 e7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stone WJR, Campo JJ, Ouédraogo AL, Meerstein-Kessel L, Morlais I, Da D, et al. Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nat Commun. 2018;9(1):558.

Article  PubMed  PubMed Central  Google Scholar 

Kundu P, Semesi A, Jore MM, Morin MJ, Price VL, Liang A, et al. Structural delineation of potent transmission-blocking epitope I on malaria antigen Pfs48/45. Nat Commun. 2018;9(1):4458.

Article  PubMed  PubMed Central  Google Scholar 

Outchkourov N, Vermunt A, Jansen J, Kaan A, Roeffen W, Teelen K, et al. Epitope analysis of the malaria surface antigen pfs48/45 identifies a subdomain that elicits transmission blocking antibodies. J Biol Chem. 2007;282(23):17148–56.

Article  CAS  PubMed  Google Scholar 

van der Boor SC, Smit MJ, van Beek SW, Ramjith J, Teelen K, van de Vegte-Bolmer M, et al. Safety, tolerability, and Plasmodium falciparum transmission-reducing activity of monoclonal antibody TB31F: a single-centre, open-label, first-in-human, dose-escalation, phase 1 trial in healthy malaria-naive adults. Lancet Infect Dis. 2022;22(11):1596–605.

Singh SK, Roeffen W, Mistarz UH, Chourasia BK, Yang F, Rand KD, et al. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microb Cell Fact. 2017;16(1):97.

Article  PubMed  PubMed Central  Google Scholar 

Singh SK, Plieskatt J, Chourasia BK, Fabra-García A, Garcia-Senosiain A, Singh V, et al. A reproducible and scalable process for manufacturing a Pfs48/45 based Plasmodium falciparum transmission-blocking vaccine. Front Immunol. 2021;11:606266.

Singh SK, Roeffen W, Andersen G, Bousema T, Christiansen M, Sauerwein R, Theisen M. A Plasmodium falciparum 48/45 single epitope R0.6C subunit protein elicits high levels of transmission blocking antibodies. Vaccine. 2015;33(16):1981–6.

Article  CAS  PubMed  Google Scholar 

Singh SK, Thrane S, Chourasia BK, Teelen K, Graumans W, Stoter R, et al. Pfs230 and Pfs48/45 fusion proteins elicit strong transmission-blocking antibody responses against Plasmodium falciparum. Front Immunol. 2019;10:1256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reimer JM, Karlsson KH, Lövgren-Bengtsson K, Magnusson SE, Fuentes A, Stertman L. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One. 2012;7(7):e41451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magnusson SE, Altenburg AF, Bengtsson KL, Bosman F, de Vries RD, Rimmelzwaan GF, Stertman L. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunol Res. 2018;66(2):224–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Food and Drug Administration CfBEaR. Toxicity grading scale for healthy adult and adolescent volunteers enrolled in preventive vaccine clinical trials. 2007.

Google Scholar 

Singh SK, Thrane S, Janitzek CM, Nielsen MA, Theander TG, Theisen M, et al. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display. Vaccine. 2017;35(30):3726–32.

Article  CAS  PubMed  Google Scholar 

Clatworthy AJ, Jones LV, Whitehouse MJ. The gas chromatography mass spectrometry of the major metabolites of flurazepam. Biomed Mass Spectrom. 1977;4(4):248–54.

Article  CAS  PubMed  Google Scholar 

van der Kolk M, De Vlas SJ, Saul A, van de Vegte-Bolmer M, Eling WM, Sauerwein RW. Evaluation of the standard membrane feeding assay (SMFA) for the determination of malaria transmission-reducing activity using empirical data. Parasitology. 2005;130(Pt 1):13–22.

Article  PubMed  Google Scholar 

Ramjith J, Alkema M, Bradley J, Dicko A, Drakeley C, Stone W, Bousema T. Quantifying reductions in plasmodium falciparum infectivity to mosquitos: a sample size calculator to inform clinical trials on transmission-reducing interventions. Front Immunol. 2022;13:899615.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Churcher TS, Blagborough AM, Delves M, Ramakrishnan C, Kapulu MC, Williams AR, et al. Measuring the blockade of malaria transmission–an analysis of the standard membrane feeding assay. Int J Parasitol. 2012;42(11):1037–44.

Article  PubMed  Google Scholar 

Esen M, Kremsner PG, Schleucher R, Gassler M, Imoukhuede EB, Imbault N, et al. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine. 2009;27(49):6862–8.

Article  CAS  PubMed  Google Scholar 

Moon JE, Greenleaf ME, Regules JA, Debois M, Duncan EH, Sedegah M, et al. A phase IIA extension study evaluating the effect of booster vaccination with a fractional dose of RTS, S/AS01(E) in a controlled human malaria infection challenge. Vaccine. 2021;39(43):6398–406.

Article  CAS  PubMed  Google Scholar 

Moon JE, Ockenhouse C, Regules JA, Vekemans J, Lee C, Chuang I, et al. A phase IIa controlled human malaria infection and immunogenicity study of RTS, S/AS01E and RTS, S/AS01B delayed fractional dose regimens in malaria-naive adults. J Infect Dis. 2020;222(10):1681–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, et al. Fractional third and fourth dose of RTS, S/as01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J Infect Dis. 2016;214(5):762–71.

Article  CAS  PubMed  Google Scholar 

Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med. 2021;2(6):701-19.e19.

Article  CAS  PubMed  Google Scholar 

Demonbreun AR, Sancilio A, Velez MP, Ryan DT, Saber R, Vaught LA, et al. Comparison of IgG and neutralizing antibody responses after one or two doses of COVID-19 mRNA vaccine in previously infected and uninfected individuals. EClinicalMedicine. 2021;38:101018.

Article  PubMed  PubMed Central  Google Scholar 

Keshavarz B, Richards NE, Workman LJ, Patel J, Muehling LM, Canderan G, et al. Trajectory of IgG to SARS-CoV-2 after vaccination with BNT162b2 or mRNA-1273 in an employee cohort and comparison with natural infection. Front Immunol. 2022;13:850987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh SK, Plieskatt J, Chourasia BK, Singh V, Bengtsson KL, Reimer JM, et al. Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine. npj Vaccines. 2021;6(1):120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology. 2022;149(6):1–22.

Article  PubMed  Google Scholar 

Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:23.

Article  PubMed 

留言 (0)

沒有登入
gif