Golubnitschaja O. Mitochondrion: The subordinated partner who agreed to come short but insists in healthy life. In: Wang W, editor. All around suboptimal health: advanced approaches by predictive, preventive and personalised medicine for healthy populations. Cham: Springer Nature Switzerland 2024. https://doi.org/10.1007/978-3-031-46891-9_3.
Golubnitschaja O. What is the routine mitochondrial health check-up good for? A holistic approach in the framework of 3P medicine. In: Podbielska H, Kapalla M, editors. Predictive, preventive, and personalised medicine: from bench to bedside. Cham: Springer International Publishing 2023. https://link.springer.com/10.1007/978-3-031-34884-6_3.
Fosslien E. Mitochondrial medicine–molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci. 2001;31:25–67.
El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab. 2017;122:1–9.
Article CAS PubMed PubMed Central Google Scholar
Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, et al. A comprehensive review on nutraceuticals: therapy support and formulation challenges. Nutrients. 2022;14:4637.
Article CAS PubMed PubMed Central Google Scholar
Mazurakova A, Koklesova L, Samec M, Kudela E, Sivakova J, Pribulova T, et al. Flavonoids exert potential in the management of hypertensive disorders in pregnancy. Pregnancy Hypertens. 2022;29:72–85.
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, et al. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25:5243.
Article CAS PubMed PubMed Central Google Scholar
Kubatka P, Mazurakova A, Samec M, Koklesova L, Zhai K, Al-Ishaq R, et al. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression-3PM pathways. EPMA J. 2021;12:559–87.
Article PubMed PubMed Central Google Scholar
Mazurakova A, Koklesova L, Csizmár SH, Samec M, Brockmueller A, Šudomová M, et al. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - a potential contribution to the predictive, preventive, and personalized medicine. J Adv Res. 2024;55:103–18.
Article CAS PubMed Google Scholar
Kubatka P, Mazurakova A, Samec M, Koklesova L, Zhai K, AL-Ishaq R, et al. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J. 2021;12:559–87.
Article PubMed PubMed Central Google Scholar
Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, et al. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13:177–93.
Article PubMed PubMed Central Google Scholar
Koklesova L, Liskova A, Samec M, Zhai K, Al-Ishaq RK, Bugos O, et al. Protective effects of flavonoids against mitochondriopathies and associated pathologies: focus on the predictive approach and personalized prevention. Int J Mol Sci. 2021;22:8649.
Article CAS PubMed PubMed Central Google Scholar
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a clue to systemic disorders: “vicious circle” of mitochondrial injury, analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. Int J Mol Sci. 2021;22(4):2007.
Article CAS PubMed PubMed Central Google Scholar
Ji Z, Liu G-H, Qu J. Mitochondrial sirtuins, metabolism, and aging. J Genet Genomics. 2022;49:287–98.
Article CAS PubMed Google Scholar
Zhang N, Sauve AA. Synthesis of β-nicotinamide riboside using an efficient two-step methodology. Curr Protocol Nucleic Acid Chem. 2017;71:14.14.1–14.14.9.
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.
Article CAS PubMed PubMed Central Google Scholar
Kane AE, Sinclair DA. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018;123:868–85.
Article CAS PubMed PubMed Central Google Scholar
Camacho-Pereira J, Tarragó MG, Chini CCS, Nin V, Escande C, Warner GM, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23:1127–39.
Article CAS PubMed PubMed Central Google Scholar
Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxidative Medicine and Cellular Longevity. 2020:e1452696. https://www.hindawi.com/journals/omcl/2020/1452696/.
Monteiro BS, Freire-Brito L, Carrageta DF, Oliveira PF, Alves MG. Mitochondrial uncoupling proteins (UCPs) as key modulators of ROS homeostasis: a crosstalk between diabesity and male infertility? Antioxidants. 2021;10:1746. https://www.mdpi.com/2076-3921/10/11/1746.
Jin X, Qiu T, Li L, Yu R, Chen X, Li C, et al. Pathophysiology of obesity and its associated diseases. Acta Pharmaceutica Sinica B. 2023;13:2403–24. https://linkinghub.elsevier.com/retrieve/pii/S2211383523000126.
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, et al. Peroxisome proliferator-activated receptor γ (PPARγ): a master gatekeeper in CNS injury and repair. Prog Neurobiol. 2018;163–164:27–58. https://linkinghub.elsevier.com/retrieve/pii/S0301008217301168.
Lin Y, Wang Y, Li P. PPARα: an emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol. 2022;13. https://www.frontiersin.org/articles/10.3389/fendo.2022.1074911.
Duncan JG, Finck BN. The PPAR α -PGC-1 α axis controls cardiac energy metabolism in healthy and diseased myocardium. PPAR Res. 2008;2008:1–10. http://www.hindawi.com/journals/ppar/2008/253817/.
Cheng C-F, Ku H-C, Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci. 2018;19:3447. https://www.mdpi.com/1422-0067/19/11/3447.
Oka S, Sabry AD, Cawley KM, Warren JS. Multiple levels of PGC-1α dysregulation in heart failure. Front Cardiovasc Med. 2020;7:2. https://www.frontiersin.org/article/10.3389/fcvm.2020.00002/full.
Koh J-H, Hancock CR, Terada S, Higashida K, Holloszy JO, Han D-H. PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. 2017;25:1176–1185.e5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894349/.
Islam H, Bonafiglia JT. Cooperative control of oxidative metabolism by PGC-1α and PPARβ: implications for exercise-induced mitochondrial remodelling in skeletal muscle. J Physiol. 2019;597:4447–9. https://onlinelibrary.wiley.com/doi/abs/10.1113/JP278538.
Lima TI, Guimarães D, Sponton CH, Bajgelman MC, Palameta S, Toscaro JM, et al. Essential role of the PGC-1α/PPARβ axis in Ucp3 gene induction. J Physiol. 2019;597:4277–91. https://onlinelibrary.wiley.com/doi/abs/10.1113/JP278006.
Suntar I, Sureda A, Belwal T, Sanches Silva A, Vacca RA, Tewari D, et al. Natural products, PGC-1α, and Duchenne muscular dystrophy. Acta Pharmaceutica Sinica B. 2020;10:734–45. https://www.sciencedirect.com/science/article/pii/S2211383519306057.
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of phytochemicals on PPAR receptors: implications for disease treatments. Vanden Heuvel JP, editor. PPAR Res. 2022:1–43. https://www.hindawi.com/journals/ppar/2022/4714914/.
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem. 2023. https://doi.org/10.1007/s11010-023-04755-7.
Article PubMed PubMed Central Google Scholar
Liu X, Yu Z, Huang X, Gao Y, Wang X, Gu J, et al. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am J Transl Res. 2016;8:5169–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209473/.
Tang J, Lu L, Liu Y, Ma J, Yang L, Li L, et al. Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling. J Cell Biochem. 2019;120:9747–57. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.28255.
Benameur T, Soleti R, Porro C. The potential neuroprotective role of free and encapsulated quercetin mediated by miRNA against neurological diseases. Nutrients. 2021;13:1318.
Article CAS PubMed PubMed Central Google Scholar
Ye Q, Ye L, Xu X, Huang B, Zhang X, Zhu Y, et al. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway. BMC Complement Altern Med. 2012;12:82. https://doi.org/10.1186/1472-6882-12-82.
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Lang H, Chen K, Zhang Y, Gao Y, Ran L, et al. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. Appl Physiol Nutr Metab. 2020;45:227–39. https://cdnsciencepub.com/doi/abs/10.1139/apnm-2019-0057.
Luo C, Sun H, Peng J, Gao C, Bao L, Ji R, et al. Rosmarinic acid exerts an antagonistic effect on nonalcoholic fatty liver disease by regulating the YAP1/TAZ-PPARγ/PGC-1α signaling pathway. Phytother Res. 2021;35:1010–22. https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6865.
Wu L, Mo W, Feng J, Li J, Yu Q, Li S, et al. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway. British J Pharmacol. 2020;177:3760–77. https://onlinelibrary.wiley.com/doi/abs/10.1111/bph.15099.
Wang S, Sheng H, Bai Y, Weng Y, Fan X, Lou L, et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice. Nutr Diabetes. 2020;10:1–11. https://www.nature.com/articles/s41387-020-00130-3.
Kim E-C, Kim J-R. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep. 2019;52:47–55.
Article PubMed PubMed Central Google Scholar
Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14:644–58.
Article CAS PubMed PubMed Central Google Scholar
Stevens JF, Revel JS, Maier CS. Mitochondria-centric review of polyphenol bioactivity in cancer models. Antioxid Redox Signal. 2018;29:1589–611.
Article CAS PubMed PubMed Central Google Scholar
Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45:763–71.
Article CAS PubMed Google Scholar
Rakha BA, Qurrat-Ul-Ain null, Ansari MS, Akhter S, Akhter A, Awan MA, et al. Effect of quercetin on oxidative stress, mitochondrial activity, and quality of Indian red jungle fowl (Gallus gallus murghi) sperm. Biopreserv Biobank. 2020;18:311–20.
Mohebali N, Shahzadeh Fazeli SA, Ghafoori H, Farahmand Z, MohammadKhani E, Vakhshiteh F, et al. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutr Neurosci. 2018;21:143–50.
Article CAS PubMed Google Scholar
Kimira M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol. 1998;8:168–75.
Article CAS PubMed Google Scholar
Inocencio C, Rivera D, Alcaraz F, Tomás-Barberán F. Flavonoid content of commercial capers (Capparis spinosa, C. sicula and C. orientalis) produced in Mediterranean countries. European Food Res Technol. 2000;212:70–4.
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004;24:851–74.
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv. 2016;34:532–49.
Aghababaei F, Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals. 2023;16:1020.
Nguyen TLA, Bhattacharya D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules. 2022;27:2494.
留言 (0)