Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation

Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

Article  CAS  PubMed  Google Scholar 

Huang, Z.-F. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

Article  CAS  Google Scholar 

Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

Article  CAS  PubMed  Google Scholar 

Gong, M. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014).

Article  CAS  PubMed  Google Scholar 

Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

Article  CAS  PubMed  Google Scholar 

Duchesne, P. N. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

Article  CAS  PubMed  Google Scholar 

Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

Article  CAS  PubMed  Google Scholar 

Jiao, Y., Zheng, Y., Davey, K. & Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016).

Article  CAS  Google Scholar 

Kumar, B. et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013).

Article  Google Scholar 

Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015).

Article  CAS  PubMed  Google Scholar 

Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

Article  CAS  PubMed  Google Scholar 

Guo, D. et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016).

Article  CAS  PubMed  Google Scholar 

Zhao, Y. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 10, 924–931 (2018).

Article  CAS  PubMed  Google Scholar 

Cui, P., Zhao, L., Long, Y., Dai, L. & Hu, C. Carbon-based electrocatalysts for acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202218269 (2023).

Article  CAS  Google Scholar 

Xue, L. et al. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Shui, J., Wang, M., Du, F. & Dai, L. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1, e1400129 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).

Article  PubMed  Google Scholar 

Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, J. et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 57, 9640–9644 (2018).

Article  CAS  Google Scholar 

Pan, B. et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon. Adv. Sci. 7, 2001002 (2020).

Article  CAS  Google Scholar 

Huang, L. et al. Direct synthesis of ammonia from nitrate on amorphous graphene with near 100% efficiency. Adv. Mater. 35, e2211856 (2023).

Article  PubMed  Google Scholar 

Zhang, C. et al. A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production. J. Am. Chem. Soc. 145, 11589–11598 (2023).

Article  CAS  PubMed  Google Scholar 

MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

Article  CAS  PubMed  Google Scholar 

Yang, J. et al. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 617, 519–523 (2023).

Article  CAS  PubMed  Google Scholar 

Wu, S. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat. Commun. 7, 13318 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).

Article  CAS  PubMed  Google Scholar 

Wang, S. et al. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nat. Commun. 12, 7072 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, R. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4, 565–574 (2021).

Article  CAS  Google Scholar 

Zhao, B.-H. et al. Economically viable electrocatalytic ethylene production with high yield and selectivity. Nat. Sustain. 6, 827–837 (2023).

Article  Google Scholar 

Bu, J. et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 4, 557–564 (2021).

Article  CAS  Google Scholar 

Zhang, L. et al. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes. Nat. Commun. 12, 6574 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue, G., Huang, X.-Y., Dong, J. & Zhang, J. The formation of an effective anti-corrosion film on copper surfaces from 2-mercaptobenzimidazole solution. J. Electroanal. Chem. 310, 139–148 (1991).

Article  CAS  Google Scholar 

Finšgar, M. 2-Mercaptobenzimidazole as a copper corrosion inhibitor: part II. Surface analysis using X-ray photoelectron spectroscopy. Corros. Sci. 72, 90–98 (2013).

Article  Google Scholar 

Platzer, G., Okon, M. & McIntosh, L. P. pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pKa measurements. J. Biomol. NMR 60, 109–129 (2014).

Article  CAS  PubMed  Google Scholar 

Richmond, W. N., Faguy, P. W. & Weibel, S. C. An in situ infrared spectroscopic study of imidazole films on copper electrodes. J. Electroanal. Chem. 448, 237–244 (1998).

Article  CAS  Google Scholar 

Biswas, N., Thomas, S., Sarkar, A., Mukherjee, T. & Kapoor, S. Adsorption of methimazole on silver nanoparticles: FTIR, Raman, and surface-enhanced Raman scattering study aided by density functional theory. J. Phys. Chem. C 113, 7091–7100 (2009).

Article  CAS  Google Scholar 

Chandra, S., Chowdhury, J., Ghosh, M. & Talapatra, G. B. Genesis of enhanced Raman bands in SERS spectra of 2-mercaptoimidazole: FTIR, Raman, DFT, and SERS. J. Phys. Chem. A 116, 10934–10947 (2012).

Article  CAS  PubMed  Google Scholar 

Wang, X., Xu, C., Jaroniec, M., Zheng, Y. & Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahmood, N. et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018).

Article  Google Scholar 

Guan, Q. et al. Reactive metal–biopolymer interaction

留言 (0)

沒有登入
gif