Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors

Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

Article  CAS  PubMed  Google Scholar 

Goodsell, D. S. Bionanotechnology: Lessons from Nature (Wiley, 2004).

Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

Article  CAS  Google Scholar 

Sauvage, J. P. et al. (eds) Molecular Machines and Motors (Springer, 2001).

Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

Article  CAS  PubMed  Google Scholar 

Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

Article  CAS  PubMed  Google Scholar 

Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

Article  CAS  PubMed  Google Scholar 

Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

Article  CAS  PubMed  Google Scholar 

Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

Article  CAS  Google Scholar 

Koumura, N., Zijistra, R. W. J., Van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

Article  CAS  PubMed  Google Scholar 

Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

Article  CAS  PubMed  Google Scholar 

Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

Article  PubMed  Google Scholar 

Chen, J., Wezenberg, S. J. & Feringa, B. L. Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chem. Commun. 52, 6765–6768 (2016).

Article  CAS  Google Scholar 

Chen, S. et al. Photoactuating artificial muscles of motor amphiphiles as an extracellular matrix mimetic scaffold for mesenchymal stem cells. J. Am. Chem. Soc. 144, 3543–3553 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J. & Feringa, B. L. Dynamic control of chiral space. Science 331, 1429–1423 (2011).

Article  CAS  PubMed  Google Scholar 

Wezenberg, S. J., Croisetu, C. M., Stuart, M. C. A. & Feringa, B. L. Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341–4346 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

Article  CAS  PubMed  Google Scholar 

Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

Article  PubMed  Google Scholar 

Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

Article  CAS  PubMed  Google Scholar 

Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

Article  CAS  PubMed  Google Scholar 

Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotechnol. 13, 304–308 (2018).

Article  CAS  PubMed  Google Scholar 

Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

Article  CAS  PubMed  Google Scholar 

Castiglioni, F. et al. Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nat. Chem. 12, 595–602 (2020).

Article  CAS  PubMed  Google Scholar 

Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).

Article  CAS  PubMed  Google Scholar 

Pollard, M. M., Meetsma, A. & Feringa, B. L. A redesign of light-driven rotary molecular motors. Org. Biomol. Chem. 6, 507–512 (2008).

Article  CAS  PubMed  Google Scholar 

Ruangsupapichat, N., Pollard, M. M., Harutyunyan, S. R. & Feringa, B. L. Reversing the direction in a light-driven rotary molecular motor. Nat. Chem. 3, 53–60 (2011).

Article  CAS  PubMed  Google Scholar 

Sheng, J. et al. Designing P-type bi-stable overcrowded alkene-based chiroptical photoswitches. Chem. Sci. 14, 4328–4336 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu, D. H. & Feringa, B. L. Controlling molecular rotary motion with a self-complexing lock. Angew. Chem. Int. Ed. 49, 1107–1110 (2010).

Article  CAS  Google Scholar 

Faulkner, A., Van Leeuwen, T., Feringa, B. L. & Wezenberg, S. J. Allosteric regulation of the rotational speed in a light-driven molecular motor. J. Am. Chem. Soc. 138, 13597–13603 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geertsema, E. M., Van Der Molen, S. J., Martens, M. & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klok, M., Browne, W. R. & Feringa, B. L. Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors. Phys. Chem. Chem. Phys. 11, 9124–9131 (2009).

Article  CAS  PubMed  Google Scholar 

Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020).

Article  PubMed  Google Scholar 

Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng, J., Pooler, D. R. S. & Feringa, B. L. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem. Soc. Rev. 52, 5875–5891 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conyard, J. et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 4, 547–551 (2012).

Article  CAS  PubMed  Google Scholar 

Conyard, J., Cnossen, A., Browne, W. R., Feringa, B. L. & Meech, S. R. Chemically optimizing operational efficiency of molecular rotary motors. J. Am. Chem. Soc. 136, 9692–9700 (2014).

Article  CAS  PubMed  Google Scholar 

Wiley, T. E., Konar, A., Miller, N. A., Spears, K. G. & Sension, R. J. Primed for efficient motion: ultrafast excited state dynamics and optical manipulation of a four stage rotary molecular motor. J. Phys. Chem. A 122, 7548–7558 (2018).

Article  CAS  PubMed  Google Scholar 

Greb, L. & Lehn, J. M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif