Pan-inhibition of the three H2S synthesizing enzymes restrains tumor progression and immunosuppression in breast cancer

Wu D, Wang SW, Lv M, Ji S, Li A. Y., Hydrogen sulfide in cancer: friend or foe? Nitric Oxide., 2015. 50: pp. 38–45.

Ascenção K, Lheimeur B, Szabo CJRB. Regulation of CyR61 expression and release by 3-mercaptopyruvate sulfurtransferase in colon cancer cells. Redox Biol. 2022;56:102466.

Article  PubMed  PubMed Central  Google Scholar 

Ma Y, et al. Anticancer effect of exogenous hydrogen sulfide in cisplatin–resistant A549/DDP cells. Oncol Rep. 2018;39(6):2969–77.

CAS  PubMed  Google Scholar 

Shen Y, et al. Protective effects of hydrogen sulfide in hypoxic human umbilical vein endothelial cells: a possible mitochondria-dependent pathway. Int J Mol Sci. 2013;14(7):13093–108.

Article  PubMed  PubMed Central  Google Scholar 

Fahmy SA et al. Molecular engines, therapeutic targets, and challenges in Pediatric Brain tumors: a special emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers (Basel), 2022. 14(21).

Youness RA et al. Role of Hydrogen Sulfide in Oncological and Non-oncological disorders and its regulation by non-coding RNAs: a Comprehensive Review. Noncoding RNA, 2024. 10(1).

Lee ZW, Chen ZJ, Zhao CS, Tan Y, Li CH, Moore L, Deng PK. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS ONE. 2011;6(6):e21077.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youness RA, et al. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide. 2018;80:12–23.

Article  CAS  PubMed  Google Scholar 

Li M, Deng LY, Pan Y, Fu L, Han H, Li X, Shi Y, Wang H. Therapeutic potential of endogenous hydrogen sulfide inhibition in breast cancer. Oncol Rep. 2021;45(5):1–9.

Article  Google Scholar 

Wang L, Zhang SH, Zhang X, Liu X, Kang Y, Shi W, Wang X. I157172, a novel inhibitor of cystathionine γ-lyase, inhibits growth and migration of breast cancer cells via SIRT1-mediated deacetylation of STAT3. Oncol Rep. 2019;41(1):427–36.

CAS  PubMed  Google Scholar 

You J, Liang SX, Ye H, Wang J, Han L, Fang H, Kang H, Wang W. Cystathionine-γ-lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget. 2017;8(39):65677.

Article  PubMed  PubMed Central  Google Scholar 

Dilek N, Toliver-Kinsky PA, Szabo T. Hydrogen sulfide: an endogenous regulator of the immune system. Pharmacol Res. 2020;161:105119.

Article  CAS  PubMed  Google Scholar 

Youness RA, et al. miR-4317, a novel tumor suppressor miRNA, alleviates immune-suppressive microenvironment induced by breast cancer. Ann Oncol. 2017;28:xi23.

Article  Google Scholar 

Youness RA, et al. miR-4317, a promising player tuning the anti-tumor armamentarium against breast cancer. Ann Oncol. 2018;29:vi18–9.

Article  Google Scholar 

Nafea H, et al. 60P curbing the interplay between mir-939-5p and HEIH lncRNA by EGCG represses hydrogen sulphide machinery and hinders breast cancer progression. Ann Oncol. 2020;31:S1235.

Article  Google Scholar 

Coletta C, et al. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S pathway: functional impairment by hyperglycemia and restoration by DL-alpha-lipoic acid. Mol Med. 2015;21(1):1–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Augsburger F, Szabo C. Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H(2)S) pathway in cancer cells. Pharmacol Res. 2020;154:104083.

Article  CAS  PubMed  Google Scholar 

Ascencao K et al. Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids. Antioxid (Basel), 2022. 11(9).

Olah G, et al. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem Pharmacol. 2018;149:186–204.

Article  CAS  PubMed  Google Scholar 

Wrobel M, et al. Is development of high-grade gliomas sulfur-dependent? Molecules. 2014;19(12):21350–62.

Article  PubMed  PubMed Central  Google Scholar 

Szczesny B, et al. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Sci Rep. 2016;6:36125.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sogutdelen E, et al. Patterns of expression of H(2)S-Producing enzyme in human renal cell carcinoma specimens: potential Avenue for future therapeutics. Vivo. 2020;34(5):2775–81.

Article  CAS  Google Scholar 

Meram AT, et al. Hydrogen sulfide is increased in oral squamous cell Carcinoma compared to adjacent benign oral mucosae. Anticancer Res. 2018;38(7):3843–52.

Article  PubMed  PubMed Central  Google Scholar 

Saurty-Seerunghen MS, et al. Glioblastoma cell motility depends on enhanced oxidative stress coupled with mobilization of a sulfurtransferase. Cell Death Dis. 2022;13(10):913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao SP et al. Role of 3-Mercaptopyruvate sulfurtransferase (3-MST) in physiology and disease. Antioxid (Basel), 2023. 12(3).

El Kilany FH, et al. miR-744/eNOS/NO axis: a novel target to halt triple negative breast cancer progression. Breast Dis. 2021;40(3):161–9.

Article  PubMed  Google Scholar 

Zhang Q, et al. The regulatory role of MiR-203 in oxidative stress induced cell injury through the CBS/H(2)S pathway. Nitric Oxide. 2022;118:31–8.

Article  CAS  PubMed  Google Scholar 

Mu T, et al. N1, N12-Diacetylspermine is elevated in Colorectal Cancer and promotes proliferation through the miR-559/CBS Axis in Cancer Cell lines. J Oncol. 2021;2021:6665704.

Article  PubMed  PubMed Central  Google Scholar 

Youness RA, et al. Targeting hydrogen sulphide signaling in breast cancer. J Adv Res. 2021;27:177–90.

Article  CAS  PubMed  Google Scholar 

Nafea H, et al. Dual targeting of H(2)S synthesizing enzymes; cystathionine β-synthase and cystathionine γ-lyase by Mir-939-5p effectively curbs triple negative breast cancer. Heliyon. 2023;9(10):e21063.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos SS, Martins RL, Petrosino V, Zuhra M, Ascenção K, Anand K, Abdel-Kader A, Gad RM, Bourquin MZ, Szabo C. Role of Cystathionine β-Synthase and 3-Mercaptopyruvate sulfurtransferase in the regulation of Proliferation, Migration, and Bioenergetics of murine breast Cancer cells. Antioxid (Basel). 2023;12(3):647.

Article  CAS  Google Scholar 

Abdel-Latif M, et al. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol Cell Biochem. 2022;477(4):1281–93.

Article  CAS  PubMed  Google Scholar 

Abdallah RM, et al. Hindering the synchronization between mir-486-5p and H19 lncRNA by Hesperetin halts breast Cancer aggressiveness through tuning ICAM-1. Anticancer Agents Med Chem. 2022;22(3):586–95.

Article  CAS  PubMed  Google Scholar 

Awad AR, et al. An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR- 20a-MICA/B axis. Nat Prod Res. 2021;35(18):3126–30.

Article  CAS  PubMed  Google Scholar 

Mekky RY, et al. MALAT-1: Immunomodulatory lncRNA hampering the innate and the adaptive immune arms in triple negative breast cancer. Transl Oncol. 2023;31:101653.

Article  CAS  PubMed  PubMed Central  Google Scholar 

SOLIMAN R-A, et al. Uncoupling tumor necrosis factor-α and interleukin-10 at tumor immune microenvironment of breast cancer through miR-17-5p/MALAT-1/H19 circuit. BIOCELL. 2022;46(3):769–83.

Article  CAS  Google Scholar 

Selem NA, et al. Let-7a/cMyc/CCAT1/miR-17-5p Circuit Re-sensitizes Atezolizumab Resistance in Triple negative breast Cancer through modulating PD-L1. Pathol Res Pract. 2023;248:154579.

Article  CAS  PubMed  Google Scholar 

Randi EB et al. Selenium-binding protein 1 (SELENBP1) supports hydrogen sulfide biosynthesis and Adipogenesis. Antioxid (Basel), 2021. 10(3).

El Din GS, et al. miRNA-506-3p directly regulates rs10754339 (A/G) in the Immune checkpoint protein B7-H4 in breast Cancer. Microrna. 2020;9(5):346–53.

Article  PubMed  Google Scholar 

Youssef SS, et al. miR-516a-3P, a potential circulating biomarker in hepatocellular carcinoma, correlated with rs738409 polymorphism in PNPLA3. Per Med. 2022;19(6):483–93.

Article  CAS  PubMed  Google Scholar 

Nafea H, et al. LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J Cell Physiol. 2021;236(7):5362–72.

Article  CAS  PubMed  Google Scholar 

Jassim GA, Hickey WD, Carter A. B., Psychological interventions for women with non-metastatic breast cancer. Cochrane Database Syst Rev, 2023(1).

Dent R, Trudeau HW, Rawlinson M, Sun E, Narod P. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2009;115:423–8.

Article  PubMed  Google Scholar 

Krämer S, et al. Treatment progress in triple negative breast cancer. Eur J Gynaecol Oncol. 2022;43(2):341–52.

Article  Google Scholar

留言 (0)

沒有登入
gif