Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet)

Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A et al (2016) Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. Plant J 85:229–244. https://doi.org/10.1111/tpj.13103

Article  CAS  PubMed  Google Scholar 

Hossain A, Maitra S, Pramanick B, Bhutia KL, Ahmad Z et al (2022) Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In: Plant perspectives to global climate changes. Academic Press, Cambridge, pp. 471–518. https://doi.org/10.1016/B978-0-323-85665-2.00011-X

Rozema J, Cornelisse D, Zhang Y, Li H, Bruning B et al (2015) Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. AoB Plants 7:2015. https://doi.org/10.1093/aobpla/plu083

Article  CAS  Google Scholar 

Al-Jbawi E (2020) All about fodder beet (beta vulgaris subsp. crassa L.) as a source of forage in the world and Syria. Res J Sci 1:24–44

Google Scholar 

Thiruvengadam M, Chung IM, Samynathan R, Chandar SH, Venkidasamy B et al (2022) A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 64:708–739. https://doi.org/10.1080/10408398.2022.2108367

Article  CAS  PubMed  Google Scholar 

Slavova Y, Nenkova D, Ivanova I (2004) Optimization of nutritive medium with the purpose of rooting of fodder beet (Beta vulgaris L. var crassa) through in vitro method. Bulg J Agric Sci 10:465–468

Google Scholar 

Enchev S, Bozhanska T (2022) Chemical composition of sugar beet, fodder beet and table beet depending on the harvest period. Bulg J Agric Sci 28:1034–1039

Google Scholar 

Bhunia S, Bhowmik A, Mallick R, Mukherjee J (2021) Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: a review. Agronomy 11:823. https://doi.org/10.3390/agronomy11050823

Article  CAS  Google Scholar 

Malcolm BJ, Cameron KC, Edwards GR, Di HJ, de Ruiter JM et al (2016) Nitrate leaching losses from lysimeters simulating winter grazing of fodder beet by dairy cows. New Zealand J Agric Res 59:194–203. https://doi.org/10.1080/00288233.2016.1150307

Article  CAS  Google Scholar 

Olumese FE, Oboh HA (2016) Antioxidant and Antioxidant capacity of raw and processed Nigerian Beetroot (Beta vulgaris). Nig J Basic Appl Sci 24:35–40. https://doi.org/10.4314/njbas.v24i1.6

Article  Google Scholar 

Kale R, Sawate AR, Kshirsagar R, Patil B, Mane R (2018) Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L). Int J Chem Stud 6:2977–2979

Google Scholar 

Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7:2801–2822. https://doi.org/10.3390/nu7042801

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz-González C, Brule M, Martin C, Feron G, Canon F (2022) Molecular mechanisms of aroma persistence: from noncovalent interactions between aroma compounds and the oral mucosa to metabolization of aroma compounds by saliva and oral cells. Food Chem 373:131467. https://doi.org/10.1016/j.foodchem.2021.131467

Article  CAS  PubMed  Google Scholar 

Hou T, Sana SS, Li H, Xing Y, Nanda A et al (2022) Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: a review. Food Biosci 47:101716. https://doi.org/10.1016/j.fbio.2022.101716

Article  CAS  Google Scholar 

Munda S, Dutta S, Pandey SK, Sarma N, Lal M (2019) Antimicrobial activity of essential oils of medicinal and aromatic plants of the North east India: a biodiversity hot spot. J Essent Oil-Bear Plants 22:105–119. https://doi.org/10.1080/0972060X.2019.1601032

Article  CAS  Google Scholar 

Aguirre-Becerra H, Vazquez-Hernandez MC, de la Saenz OD, Alvarado-Mariana A, Guevara-Gonzalez RG et al (2021) Role of stress and defense in plant secondary metabolites production. In: Pal D, Nayak AK (eds) Bioactive natural products for pharmaceutical applications. Springer, Berlin, pp 151–195. https://doi.org/10.1007/978-3-030-54027-2-5

Chapter  Google Scholar 

Ju J, Xie Y, Yu H, Guo Y, Cheng Y et al (2022) Synergistic interactions of plant essential oils with antimicrobial agents: a new antimicrobial therapy. Crit Rev Food Sci Nutr 62:1740–1751. https://doi.org/10.1080/10408398.2020.1846494

Article  CAS  PubMed  Google Scholar 

Sugier P, Jakubowicz-Gil J, Sugier D, Kowalski R, Gawlik-Dziki U et al (2020) Chemical characteristics and anticancer activity of essential oil from Arnica montana L. rhizomes and roots. Molecules 25:1284. https://doi.org/10.3390/molecules25061284

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paes de Almeida V, Tolouei SEL, Minteguiaga M, Chaves DSDA, Heiden G et al (2023) Chemical profiles and cytotoxic activities of essential oils from six species of Baccharis subgenus Coridifoliae (Asteraceae). Chem Biodivers 20:e202300862. https://doi.org/10.1002/cbdv.202300862

Article  CAS  PubMed  Google Scholar 

Baptista RC, Horita CN, Sant’Ana AS (2020) Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: a review. Food Res Int 127:108762. https://doi.org/10.1016/j.foodres.2019.108762

Article  PubMed  Google Scholar 

Al-Hwaiti MS, Alsbou EM, Abu Sheikha G, Bakchiche B, Pham TH et al (2021) Evaluation of the anticancer activity and fatty acids composition of “Handal” (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci Nutr 9:282–289. https://doi.org/10.1002/fsn3.1994

Article  CAS  PubMed  Google Scholar 

Balusamy SR, Perumalsamy H, Veerappan K, Huq MA, Rajeshkumar S et al (2020) Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed Res Int 2020:6040727. https://doi.org/10.1155/2020/6040727

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J (2020) Flavonoids as anticancer agents. Nutrients 12:457. https://doi.org/10.3390/nu12020457

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Amier YA, Soliman HM, El-Halawany EF, El-Nabawy BS (2022) Chemical characterization of Reichardia tingitana methanolic extract and evaluation of its antioxidant and anticancer activity. Egypt J Chem 65:933–940. https://doi.org/10.21608/EJCHEM20221557206722

Article  Google Scholar 

Morsi EA, Ahmed HO, Abdel-Hady H, El-Sayed M, Shemis MA (2020) GC-analysis, and antioxidant, anti-inflammatory, and anticancer activities of some extracts and fractions of Linum usitatissimum. Curr Bioact Compd 16:1306–1318. https://doi.org/10.2174/1573407216666200206095954

Article  CAS  Google Scholar 

Linz MS, Mattappallil A, Finkel D, Parker D (2023) Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics 12:557. https://doi.org/10.3390/antibiotics12030557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurst JR, Shannon BA, Craig HC, Rishi A, Tuffs SW et al (2022) The Streptococcus pyogenes hyaluronic acid capsule promotes experimental nasal and skin infection by preventing neutrophil-mediated clearance. PLoS Pathog 18:e1011013. https://doi.org/10.1371/journal.ppat.1011013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alamiri F, André O, De S, Nordenfelt P, Hakansson AP (2023) Role of serotype and virulence determinants of Streptococcus pyogenes biofilm bacteria in internalization and persistence in epithelial cells in vitro. Front Cell Infect Microbiol 13:1146431. https://doi.org/10.3389/fcimb.2023.1146431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eishi Y (2023) Potential association of Cutibacterium acnes with sarcoidosis as an endogenous hypersensitivity infection. Microorganisms 11:289. https://doi.org/10.3390/microorganisms11020289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mastrolorenzo A, Giomi B, Cipollini EM, Tammaro R, Decarli N et al (2012) Mycetomatoid infection of the penis by Candida albicans. Int J Dermatol 51:1082–1085. https://doi.org/10.1111/j.1365-4632.2011.05386.x

Article  PubMed  Google Scholar 

Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM et al (2018) Candida auris: a review of the literature. Clin Microbiol Rev 31:e00029-e117. https://doi.org/10.1128/cmr.00029-17

Article  PubMed  Google Scholar 

Perlin DS, Shor E, Zhao Y (2015) Update on antifungal drug resistance. Curr Clin Microbiol Rep 2:84–95. https://doi.org/10.1007/s40588-015-0015-1

Article  PubMed  PubMed Central  Google Scholar 

Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18. https://doi.org/10.1016/j.aca.2011.07.018

Article  CAS  PubMed  Google Scholar 

Neto JAR, Alves SN, dos Santos Lima LAR (2023) Fatty acid methyl esters (FAMEs) obtained from edible vegetable oils: larvicidal activity and melanization process in Aedes aegypti larvae. Biocatal Agric Biotechnol 50:102689. https://doi.org/10.1016/j.bcab.2023.102689

Article  CAS  Google Scholar 

Asraoui F, Kounnoun A, Cadi HE, Cacciola F et al (2021) Phytochemical investigation and antioxidant activity of Globularia alypum L Molecules 26:759. https://doi.org/10.3390/molecules26030759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Mrid R, Bouchmaa N, Bouargalne Y, Ramdan B, Karrouchi K et al (2019) Phytochemical characterization, antioxidant and in vitro cytotoxic activity evaluation of Juniperus oxycedrus Subsp. oxycedrus needles and berries. Molecules 24:502. https://doi.org/10.3390/molecules24030502

Article  CAS 

留言 (0)

沒有登入
gif