Application of additive manufacturing in biomedical domain: a bibliometric review, thematic evolution and content analysis

Salaha, Z.F.M., Ammarullah, M.I., Abdullah, N.N.A.A., Aziz, A.U.A., Gan, H.S., Abdullah, A.H., et al.: Biomechanical effects of the porous structure of Gyroid and Voronoi Hip implants: A finite element analysis using an experimentally validated Model. Materials. 16(9) (2023). https://doi.org/10.3390/ma16093298

Prakoso, A.T., Basri, H., Adanta, D., Yani, I., Ammarullah, M.I., Akbar, I., et al.: The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines. 11(2) (2023). https://doi.org/10.3390/biomedicines11020427

Kumar, A., Kumar, D., Choudhury, R., Ansu, A., Goyal, A., Oza, A.D., et al.: Application of 3D printing for engineering and bio-medicals: Recent trends and development. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01145-z

Article  Google Scholar 

Bertolini, M., Luraghi, G., Belicchi, I., Migliavacca, F., Colombo, G.: Evaluation of segmentation accuracy and its impact on patient-specific CFD analysis. Int. J. Interact. Des. Manuf. 16(2), 545–556 (2022). https://doi.org/10.1007/s12008-021-00802-z

Article  Google Scholar 

Shick, T.M., Abdul Kadir, A.Z., Ngadiman, N.H.A., Ma’aram, A.: A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering. J. Bioactive Compatible Polym. 34(6), 415–435 (2019). https://doi.org/10.1177/0883911519877426

Article  Google Scholar 

Qu, H.: Additive manufacturing for bone tissue engineering scaffolds. Mater. Today Commun. 24, 101024 (2020). https://doi.org/10.1016/j.mtcomm.2020.101024

Article  Google Scholar 

Moreno Madrid, A.P., Vrech, S.M., Sanchez, M.A., Rodriguez, A.P.: Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Engineering: C. 100, 631–644 (2019). https://doi.org/10.1016/j.msec.2019.03.037

Article  Google Scholar 

Anand, P.B., Nagaraja, S., Jayaram, N., Sreenivasa, S.P., Almakayeel, N., Khan, T.M.Y., et al.: Kenaf Fiber and Hemp Fiber multi-walled Carbon Nanotube Filler-Reinforced Epoxy-based hybrid composites for Biomedical Applications: Morphological and mechanical characterization. J. Compos. Sci. 7(8) (2023). https://doi.org/10.3390/jcs7080324

Tauviqirrahman, M., Ammarullah, M.I., Jamari, J., Saputra, E., Winarni, T.I., Kurniawan, F.D., et al.: Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle. Sci. Rep. 13(1) (2023). https://doi.org/10.1038/s41598-023-30725-6

Tytgat, L., Van Damme, L., Van Hoorick, J., Declercq, H., Thienpont, H., Ottevaere, H., et al.: Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomater. 94, 340–350 (2019). https://doi.org/10.1016/j.actbio.2019.05.062

Article  Google Scholar 

Cockerill, I., Su, Y., Sinha, S., Qin, Y.-X., Zheng, Y., Young, M.L., et al.: Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Mater. Sci. Engineering: C. 110, 110738 (2020). https://doi.org/10.1016/j.msec.2020.110738

Article  Google Scholar 

Meng, Z., He, J., Cai, Z., Wang, F., Zhang, J., Wang, L., et al.: Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater. Design. 189, 108508 (2020). https://doi.org/10.1016/j.matdes.2020.108508

Article  Google Scholar 

Bégin-Drolet, A., Dussault, M.-A., Fernandez, S.A., Larose-Dutil, J., Leask, R.L., Hoesli, C.A., et al.: Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. Additive Manuf. 15, 29–39 (2017). https://doi.org/10.1016/j.addma.2017.03.006

Article  Google Scholar 

Camarero-Espinosa, S., Calore, A., Wilbers, A., Harings, J., Moroni, L.: Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomater. 102, 192–204 (2020). https://doi.org/10.1016/j.actbio.2019.11.041

Article  Google Scholar 

Lei, H., Yi, T., Fan, H., Pei, X., Wu, L., Xing, F., et al.: Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. Mater. Sci. Engineering: C. 120, 111789 (2021). https://doi.org/10.1016/j.msec.2020.111789

Article  Google Scholar 

Pecci, R., Baiguera, S., Ioppolo, P., Bedini, R., Del Gaudio, C.: 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization. J. Mech. Behav. Biomed. Mater. 103, 103583 (2020). https://doi.org/10.1016/j.jmbbm.2019.103583

Article  Google Scholar 

Yu, G.Z., Chou, D.-T., Hong, D., Roy, A., Kumta, P.N.: Biomimetic rotated Lamellar Plywood motifs by Additive Manufacturing of Metal Alloy Scaffolds for bone tissue Engineering. ACS Biomaterials Sci. Eng. 3(4), 648–657 (2017). https://doi.org/10.1021/acsbiomaterials.7b00043

Article  Google Scholar 

Mondal, D., Srinivasan, A., Comeau, P., Toh, Y.-C., Willett, T.L.: Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering. Mater. Sci. Engineering: C. 118, 111400 (2021). https://doi.org/10.1016/j.msec.2020.111400

Article  Google Scholar 

Zafeiris, K., Brasinika, D., Karatza, A., Koumoulos, E., Karoussis, I.K., Kyriakidou, K., et al.: Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mater. Sci. Engineering: C. 119, 111639 (2021). https://doi.org/10.1016/j.msec.2020.111639

Article  Google Scholar 

Mallikarjuna, B., Bhargav, P., Hiremath, S., Jayachristiyan, K.G., Jayanth, N.: A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters and military applications. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01354-0

Article  Google Scholar 

Thakur, V., Singh, R., Kumar, R., Gehlot, A.: 4D printing of thermoresponsive materials: A state-of-the-art review and prospective applications. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01018-5

Article  Google Scholar 

Prashar, G., Vasudev, H., Bhuddhi, D.: Additive manufacturing: Expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00956-4

Article  Google Scholar 

Huang, T.Q., Qu, X., Liu, J., Chen, S.: 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices. 16(1), 127–132 (2014). https://doi.org/10.1007/s10544-013-9812-6

Article  Google Scholar 

Lei, D., Yang, Y., Liu, Z., Yang, B., Gong, W., Chen, S., et al.: 3D printing of biomimetic vasculature for tissue regeneration. Mater. Horiz. 6(6), 1197–1206 (2019). https://doi.org/10.1039/C9MH00174C

Article  Google Scholar 

Portillo-Lara, R., Spencer, A.R., Walker, B.W., Shirzaei Sani, E., Annabi, N.: Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials. 198, 78–94 (2019). https://doi.org/10.1016/j.biomaterials.2018.08.010

Article  Google Scholar 

Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., et al.: Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25(2), 263–269 (2019). https://doi.org/10.1038/s41591-018-0296-z

Article  Google Scholar 

Chang, Y., Jiang, J., Chen, W., Yang, W., Chen, L., Chen, P., et al.: Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. Appl. Mater. Today. 18, 100492 (2020). https://doi.org/10.1016/j.apmt.2019.100492

Article  Google Scholar 

Cho, H., Jammalamadaka, U., Tappa, K., Egbulefu, C., Prior, J., Tang, R., et al.: 3D Printing of Poloxamer 407 Nanogel discs and their applications in adjuvant ovarian Cancer therapy. Mol. Pharm. 16(2), 552–560 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b00836

Article  Google Scholar 

Ma, H., Li, T., Huan, Z., Zhang, M., Yang, Z., Wang, J., et al.: 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater. 10(4), 31–44 (2018). https://doi.org/10.1038/s41427-018-0015-8

Article  Google Scholar 

Monshi, M., Esmaeili, S., Kolooshani, A., Moghadas, B.K., Saber-Samandari, S., Khandan, A.: A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application %J. Nanomed. J. 7(2), 138–148 (2020). https://doi.org/10.22038/nmj.2020.07.007

Article  Google Scholar 

Rao, P.M., Dhoria, S.H., Patro, S.G.K., Gopidesi, R.K., Alkahtani, M.Q., Islam, S., et al.: Artificial intelligence based modelling and hybrid optimization of linseed oil biodiesel with graphene nanoparticles to stringent biomedical safety and environmental standards. Case Stud. Therm. Eng. 51 (2023). https://doi.org/10.1016/j.csite.2023.103554

Nesaei, S., Song, Y., Wang, Y., Ruan, X., Du, D., Gozen, A., et al.: Micro additive manufacturing of glucose biosensors: A feasibility study. Anal. Chim. Acta. 1043, 142–149 (2018). https://doi.org/10.1016/j.aca.2018.09.012

Article  Google Scholar 

Roda, A., Guardigli, M., Calabria, D., Calabretta, M.M., Cevenini, L., Michelini, E.: A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst. 139(24), 6494–6501 (2014). https://doi.org/10.1039/C4AN01612B

Article  Google Scholar 

López Marzo, A.M., Mayorga-Martinez, C.C., Pumera, M.: 3D-printed graphene direct electron transfer enzyme biosensors. Biosens. Bioelectron. 151, 111980 (2020). https://doi.org/10.1016/j.bios.2019.111980

Article  Google Scholar 

Damiati, S., Küpcü, S., Peacock, M., Eilenberger, C., Zamzami, M., Qadri, I., et al.: Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens. Bioelectron. 94, 500–506 (2017). https://doi.org/10.1016/j.bios.2017.03.045

Article  Google Scholar 

Mavrikou, S., Moschopoulou, G., Tsekouras, V., Kintzios, S.: Development of a Portable, ultra-rapid and ultra-sensitive cell-based Biosensor for the direct detection of the SARS-CoV-2 S1 spike protein Antigen. ;20(11):3121. (2020)

Charles, P.T., Goldman, E.R., Rangasammy, J.G., Schauer, C.L., Chen, M.S., Taitt, C.R.: Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens. Bioelectron. 20(4), 753–764 (2004). https://doi.org/10.1016/j.bios.2004.04.007

Article  Google Scholar 

Cesewski, E., Johnson, B.N.: Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020). https://doi.org/10.1016/j.bios.2020.112214

Article  Google Scholar 

Jamari, J., Ammarullah, M.I., Santoso, G., Sugiharto, S., Supriyono, T., van der Heide, E.: Silico Contact Pressure of Metal-on-Metal Total Hip Implant with different materials subjected to Gait Loading. Metals. 12(8) (2022). https://doi.org/10.3390/met12081241

Jamari, J., Ammarullah, M.I., Santoso, G., Sugiharto, S., Supriyono, T., Permana, M.S., et al.: Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: Review over the past 30 years. Heliyon. 8(12) (2022). https://doi.org/10.1016/j.heliyon.2022.e12050

Won, J.Y., Kim, J., Gao, G., Kim, J., Jang, J., Park, Y.-H., et al.: 3D printing of drug-loaded multi-shell rods for local delivery of bevacizumab and dexamethasone: A synergetic therapy for retinal vascular diseases. Acta Biomater. 116, 174–185 (2020). https://doi.org/10.1016/j.actbio.2020.09.015

Article  Google Scholar 

Reddy Dumpa, N., Bandari, S.: Novel gastroretentive floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and fused deposition modeling 3D Printing. Pharmaceutics. 12(1) (2020). https://doi.org/10.3390/pharmaceutics12010052

Shi, K., Aviles-Espinosa, R., Rendon-Morales, E., Woodbine, L., Maniruzzaman, M., Nokhodchi, A.: Novel 3D printed device with integrated macroscale magnetic field triggerable anti-cancer drug delivery system. Colloids Surf., B. 192, 111068 (2020). https://doi.org/10.1016/j.colsurfb.2020.111068

Article  Google Scholar 

Wang, Y., Sun, L., Mei, Z., Zhang, F., He, M., Fletcher, C., et al.: 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater. Design. 186, 108336 (2020). https://doi.org/10.1016/j.matdes.2019.108336

Article  Google Scholar 

Rohani Shirvan, A., Bashari, A., Hemmatinejad, N.: New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur. Polymer J. 119, 541–550 (2019). https://doi.org/10.1016/j.eurpolymj.2019.07.010

Article  Google Scholar 

Xu, X., Goyanes, A., Trenfield, S.J., Diaz-Gomez, L., Alvarez-Lorenzo, C., Gaisford, S., et al.: Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Mater. Sci. Engineering: C. 120, 111773 (2021). https://doi.org/10.1016/j.msec.2020.111773

Article  Google Scholar 

Dawood, A., Marti, B.M., Sauret-Jackson, V., Darwood, A.: 3D printing in dentistry. Br. Dent. J. 219(11), 521–529 (2015). https://doi.org/10.1038/sj.bdj.2015.914

Article 

留言 (0)

沒有登入
gif