C-terminal region of Rv1039c (PPE15) protein of Mycobacterium tuberculosis targets host mitochondria to induce macrophage apoptosis

Liu CH, Liu H, Ge B (2017) Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 14:963–975. https://doi.org/10.1038/cmi.2017.88

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad J, Khubaib M, Sheikh JA, Pancsa R, Kumar S, Srinivasan A, Babu MM, Hasnain SE, Ehtesham NZ (2020) Disorder-to-order transition in PE-PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Bio 10:70–85. https://doi.org/10.1002/2211-5463.12749

Article  CAS  PubMed  Google Scholar 

Ates LS (2020) New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol 113. https://doi.org/10.1111/mmi.14409

Chai Q, Wang X, Qiang L, Zhang Y, Ge P, Lu Z, Zhong Y, Li B, Wang J, Zhang L, Zhou D, Li W, Dong W, Pang Y, Gao GF, Liu CH (2019) A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun 10:1973. https://doi.org/10.1038/s41467-019-09955-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad J, Farhana A, Pancsa R, Arora SK, Srinivasan A, Tyagi AK, Babu MM, Ehtesham NZ, Hasnain SE (2018) Contrasting Function of Structured N-Terminal and Unstructured C-Terminal Segments of Mycobacterium tuberculosis PPE37 Protein., MBio. 9 https://doi.org/10.1128/mBio.01712-17

Srivastava S, Battu MB, Khan MZ, Nandicoori VK, Mukhopadhyay S (2019) Mycobacterium tuberculosis PPE2 protein interacts with p67(phox) and inhibits reactive oxygen species production. J Immunol 203:1218–1229. https://doi.org/10.4049/jimmunol.1801143

Article  CAS  PubMed  Google Scholar 

Medha, Priyanka P, Bhatt S, Sharma M, Sharma (2022) Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis, apoptosis. https://doi.org/10.1007/s10495-022-01778-1

Sharma S, Schiller MR (2019) The carboxy-terminus, a key regulator of protein function. Crit Rev Biochem Mol Biol 54:85–102. https://doi.org/10.1080/10409238.2019.1586828

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-Fernández JC (2014) Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chem Phys Lipids 183:77–90. https://doi.org/10.1016/j.chemphyslip.2014.05.003

Article  CAS  PubMed  Google Scholar 

Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20:1257–1267. https://doi.org/10.1038/cdd.2013.65

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Ge P, Lei Z, Lu Z, Qiang L, Chai Q, Zhang Y, Zhao D, Li B, Su J, Peng R, Pang Y, Shi Y, Zhang Y, Gao GF, Qiu X, Liu CH (2021) Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep 22:e52175. https://doi.org/10.15252/embr.202052175

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucattini R, Likić VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to Mitochondria. Mol Biol Evol 21:652–658. https://doi.org/10.1093/molbev/msh058

Article  CAS  PubMed  Google Scholar 

Grover S, Sharma T, Singh Y, Kohli S, Singh MPA, Semmler T, Wieler LH, Tedin K, Ehtesham NZ, Hasnain SE (2018) The PGRS Domain of Mycobacterium tuberculosis PE_PGRS Protein Rv0297 Is Involved in Endoplasmic Reticulum Stress-Mediated Apoptosis through Toll-Like Receptor 4., MBio. 9 https://doi.org/10.1128/mBio.01017-18

Cadieux N, Parra M, Cohen H, Maric D, Morris SL, Brennan MJ (2011) Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE-PGRS33 protein. Microbiology 157:793–804. https://doi.org/10.1099/mic.0.041996-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma N, Shariq M, Quadir N, Singh J, Sheikh JA, Hasnain SE, Ehtesham NZ (2021) Mycobacterium tuberculosis protein PE6 (Rv0335c), a Novel TLR4 agonist, evokes an inflammatory response and modulates the cell death pathways in macrophages to enhance intracellular survival. Front Immunol 12:696491. https://doi.org/10.3389/fimmu.2021.696491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Priyanka, Medha P, Bhatt H, Joshi S, Sharma M, Sharma (2023) Late stage specific Rv0109 (PE_PGRS1) protein of Mycobacterium tuberculosis induces mitochondria mediated macrophage apoptosis. Microb Pathog 176:106021. https://doi.org/10.1016/j.micpath.2023.106021

Article  CAS  PubMed  Google Scholar 

Martin M, DeVisch A, Boudehen Y-M, Barthe P, Turapov O, Aydogan T, Heriaud L, Gracy J, Mukamolova GV, Letourneur F, Cohen-Gonsaud M (2021) A Mycobacterium tuberculosis effector targets mitochondrion, controls energy metabolism and limits cytochrome c exit, BioRxiv. 2021.01.31.428746. https://doi.org/10.1101/2021.01.31.428746

Duan L, Gan H, Golan DE, Remold HG (2002) Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis. J Immunol 169:5181–5187. https://doi.org/10.4049/jimmunol.169.9.5181

Article  PubMed  Google Scholar 

Jamwal S, Midha MK, Verma HN, Basu A, Rao KVS, Manivel V (2013) Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis. Sci Rep 3. https://doi.org/10.1038/srep01328

Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20. https://doi.org/10.1016/s0014-5793(03)01464-9

Article  CAS  PubMed  Google Scholar 

Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Wan C, Lin J, Hammes H (2022) Mitochondrial Oxidative Stress and Cell Death in Podocytopathies

Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629. https://doi.org/10.1126/science.1099320

Article  CAS  PubMed  Google Scholar 

Medha, Priyanka S, Sharma M, Sharma (2023) PE_PGRS45 (Rv2615c) protein of Mycobacterium tuberculosis perturbs mitochondria of macrophages. Immunol Cell Biol. https://doi.org/10.1111/imcb.12677

Article  PubMed  Google Scholar 

Mossmann D, Meisinger C, Vögtle F-N (2012) Processing of mitochondrial presequences. Biochim Biophys Acta 1819:1098–1106. https://doi.org/10.1016/j.bbagrm.2011.11.007

Article  CAS  PubMed  Google Scholar 

Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49. https://doi.org/10.1016/j.cell.2008.11.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniel J, Kapoor N, Sirakova T, Sinha R, Kolattukudy P (2016) The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol Microbiol 101:784–794. https://doi.org/10.1111/mmi.13422

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, Bileschi ML, Bork P, Bridge A, Colwell L, Gough J, Haft DH, Letunić I, Marchler-Bauer A, Mi H, Natale DA, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A (2023) Nucleic Acids Res 51:D418–D427 InterPro in 2022. https://doi.org/10.1093/nar/gkac993

Article  CAS  PubMed  Google Scholar 

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian J, Chen R, Wang H, Zhang X (2020) Role of the PE/PPE family in Host-Pathogen interactions and prospects for Anti-tuberculosis Vaccine and Diagnostic Tool Design. Front Cell Infect Microbiol 10:594288. https://doi.org/10.3389/fcimb.2020.594288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danelishvili L, Everman J, Bermudez LE Mycobacterium tuberculosis PPE68 and Rv2626c genes contribute to the host cell necrosis and bacterial escape from macrophages. Virulence 7 (2016) 23–32. https://doi.org/10.1080/21505594.2015.1102832

Joseph S, Yuen A, Singh V, Hmama Z (2017) Mycobacterium tuberculosis Cpn60.2 (GroEL2) blocks macrophage apoptosis via interaction with mitochondrial mortalin. Biol Open 6:481–488. https://doi.org/10.1242/bio.023119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubey RK, Dhamija E, Kumar Mishra A, Soam D, Mohanrao Yabaji S, Srivastava K, Srivastava KK (2021) Mycobacterial origin protein Rv0674 localizes into mitochondria, interacts with D-loop and regulates OXPHOS for intracellular persistence of Mycobacterium tuberculosis. Mitochondrion 57:241–256. https://doi.org/10.1016/j.mito.2020.11.014

Article  CAS  PubMed  Google Scholar 

Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM (2010) Portrait of a Pathogen: the Mycobacterium tuberculosis Proteome in vivo. PLoS ONE 5:e13938

Article  PubMed  PubMed Central  Google Scholar 

Murphy DJ, Brown JR (2007) Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 7:84. https://doi.org/10.1186/1471-2334-7-84

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillies LA, Kuwana T (2014) Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem 115:632–640. https://doi.org/10.1002/jcb.24709

Article 

留言 (0)

沒有登入
gif