Prokaryotic communities of the French Polynesian sponge Dactylospongia metachromia display a site-specific and stable diversity during an aquaculture trial

Aguila-Ramírez RN, Hernández-Guerrero CJ, González-Acosta B et al (2014) Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. Int Biodeterior Biodegradation 90:64–70. https://doi.org/10.1016/j.ibiod.2014.02.003

Article  CAS  Google Scholar 

Aminot A, Rey F  (2001) Chlorophyll a: determination by spectroscopic methods. ICES Techniques Marine Environ Sci 30:17. https://doi.org/10.25607/OBP-278

Astudillo-García C, Bell JJ, Webster NS et al (2017) Evaluating the core microbiota in complex communities: A systematic investigation. Environ Microbiol 19:1450–1462. https://doi.org/10.1111/1462-2920.13647

Article  PubMed  Google Scholar 

Astudillo-García C, Bell JJ, Montoya JM et al (2020) Assessing the strength and sensitivity of the core microbiota approach on a highly diverse sponge reef. Environ Microbiol 22:3985–3999. https://doi.org/10.1111/1462-2920.15185

Article  PubMed  Google Scholar 

Banker RMW, Lipovac J, Stachowicz JJ, Gold DA (2022) Sodium molybdate does not inhibit sulfate-reducing bacteria but increases shell growth in the Pacific oyster Magallana gigas. PLoS ONE 17:e0262939. https://doi.org/10.1371/journal.pone.0262939

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baquiran JIP, Conaco C (2018) Sponge-microbe partnerships are stable under eutrophication pressure from mariculture. Mar Pollut Bull 136:125–134. https://doi.org/10.1016/j.marpolbul.2018.09.011

Article  CAS  PubMed  Google Scholar 

Batista D, Costa R, Carvalho AP et al (2018) Environmental conditions affect activity and associated microorganisms of marine sponges. Mar Environ Res 142:59–68. https://doi.org/10.1016/j.marenvres.2018.09.020

Article  CAS  PubMed  Google Scholar 

Bayer K, Jahn MT, Slaby BM et al (2018) Marine Sponges as Chloroflexi Hot Spots: Genomic Insights and High-Resolution Visualization of an Abundant and Diverse Symbiotic Clade. Systems 3:00150–18. https://doi.org/10.1128/mSystems.00150-18

Article  Google Scholar 

Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353. https://doi.org/10.1016/j.ecss.2008.05.002

Article  Google Scholar 

Bibi F, Yasir M, Al-Sofyani A et al (2020) Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp. EA348. Saudi J Biol Sci 27:1139–1147. https://doi.org/10.1016/j.sjbs.2020.02.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bierwirth J, Mantas TP, Villechanoux J, Cerrano C (2022) Restoration of marine sponges—what can we learn from over a century of experimental cultivation? Water 14:1055. https://doi.org/10.3390/w14071055

Article  Google Scholar 

Borcard D, Legendre P, Drapeau P (1992) Partialling out the Spatial Component of Ecological Variation. Ecology 73:1045–1055. https://doi.org/10.2307/1940179

Article  Google Scholar 

Brinkmann CM, Marker A, Kurtböke Dİ (2017) An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. Diversity 9:40. https://doi.org/10.3390/d9040040

Article  CAS  Google Scholar 

Busch K, Slaby BM, Bach W et al (2022) Biodiversity, environmental drivers, and sustainability of the global deep-sea sponge microbiome. Nat Commun 13:5160. https://doi.org/10.1038/s41467-022-32684-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

Article  PubMed  PubMed Central  Google Scholar 

Callahan BJ, Sankaran K, Fukuyama JA et al. (2016b) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5:1492 https://doi.org/10.12688/f1000research.8986.2

Campana S, Busch K, Hentschel U et al (2021) DNA-stable isotope probing (DNA-SIP) identifies marine sponge-associated bacteria actively utilizing dissolved organic matter (DOM). Environ Microbiol 23:4489–4504. https://doi.org/10.1111/1462-2920.15642

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campana S, Demey C, Busch K et al (2021) Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiol Ecol 97:fiab115. https://doi.org/10.1093/femsec/fiab115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capon RJ, MacLeod JK (1987) Revision of the absolute stereochemistry of ilimaquinone. J Org Chem 52:5059–5060

Article  CAS  Google Scholar 

Cárdenas CA, Bell JJ, Davy SK et al (2014) Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol Ecol 88:516–527. https://doi.org/10.1111/1574-6941.12317

Article  CAS  PubMed  Google Scholar 

Carte B, Rose CB, Faulkner DJ (1985) 5-Epi-Ilimaquinone, a metabolite of the sponge Fenestraspongia sp. J Org Chem 50:2785–2787

Article  CAS  Google Scholar 

Chen ML, Becraft ED, Pachiadaki M et al (2020) Hiding in plain sight: The globally distributed bacterial candidate Phylum PAUC34f. Front Microbiol 11:376. https://doi.org/10.3389/fmicb.2020.00376

Article  PubMed  PubMed Central  Google Scholar 

Chombard C, Boury-Esnault N, Tillier S (1998) Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. Syst Biol 47:351–366. https://doi.org/10.1080/106351598260761

Article  CAS  PubMed  Google Scholar 

Cleary DFR, Polónia ARM, Reijnen BT et al (2020) Prokaryote communities inhabiting endemic and newly discovered sponges and octocorals from the Red Sea. Microb Ecol 80:103–119. https://doi.org/10.1007/s00248-019-01465-w

Article  CAS  PubMed  Google Scholar 

Cleary DFR, Polónia ARM, Swierts T et al (2022) Spatial and environmental variables structure sponge symbiont communities. Mol Ecol 31:4932–4948. https://doi.org/10.1111/mec.16631

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cleary DFR, Polónia ARM, de Voogd NJ (2018) Prokaryote composition and predicted metagenomic content of two Cinachyrella Morphospecies and water from West Papuan Marine Lakes. FEMS Microbiology Ecology 94. https://doi.org/10.1093/femsec/fix175

Daletos G, de Voogd NJ, Müller WEG et al (2014) Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia. J Nat Prod 77:218–226. https://doi.org/10.1021/np400633m

Article  CAS  PubMed  Google Scholar 

Davis NM, Proctor DM, Holmes SP et al (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. https://doi.org/10.1186/s40168-018-0605-2

Article  PubMed  PubMed Central  Google Scholar 

De Caralt S, Sánchez-Fontenla J, Uriz MJ, Wijffels RH (2010) In situ aquaculture methods for Dysidea avara (Demospongiae, Porifera) in the northwestern mediterranean. Mar Drugs 8:1731–1742. https://doi.org/10.3390/md8061731

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Voogd NJ (2007) The mariculture potential of the Indonesian reef-dwelling sponge Callyspongia (Euplacella) biru: Growth, survival and bioactive compounds. Aquaculture 262:54–64. https://doi.org/10.1016/j.aquaculture.2006.09.028

Article  CAS  Google Scholar 

de Goeij JM, Lesser MP, Pawlik JR (2017) Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo JL, Bell JJ (eds) Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization. Springer International Publishing, Cham, pp 373–410

Chapter  Google Scholar 

Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

Article  Google Scholar 

Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679. https://doi.org/10.1007/s10126-009-9213-2

Article  CAS  Google Scholar 

Duckworth A, Battershill C (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:311–329. https://doi.org/10.1016/S0044-8486(03)00070-X

Article  Google Scholar 

Duckworth AR, Battershill CN (2003) Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217:139–156. https://doi.org/10.1016/S0044-8486(02)00038-8

Article  CAS  Google Scholar 

Easson CG, Thacker RW (2014) Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front Microbiol 5:532. https://doi.org/10.3389/fmicb.2014.00532

Article  PubMed  PubMed Central  Google Scholar 

Easson CG, Chaves-Fonnegra A, Thacker RW, Lopez JV (2020) Host population genetics and biogeography structure the microbiome of the sponge Cliona delitrix. Ecol Evol 10:2007. https://doi.org/10.1002/ece3.6033

Article  PubMed  PubMed Central  Google Scholar 

Ehrlich H, Worch H (2007) Sponges as natural composites: from biomimetic potential to development of new biomaterials. Porifera Res: Biodivers Innovat Sustain 217–223

Engelberts JP, Robbins SJ, de Goeij JM et al (2020) Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J 14:1100–1110.

留言 (0)

沒有登入
gif