Pre-clinical evaluation of 99mTc-labeled chalcone derivative for amyloid-β imaging post-head trauma

Johnson VE, Stewart W, Arena JD, Smith DH (2017) Traumatic brain injury as a trigger of neurodegeneration. In: Beart P, Robinson M, Rattray M, Maragakis NJ (eds) Neurodegenerative diseases. Springer New York LLC, Cham

Google Scholar 

Bramlett HM, Dietrich WD (2015) Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma 32:1834–1848. https://doi.org/10.1089/neu.2014.3352

Article  PubMed  PubMed Central  Google Scholar 

Kudryashev JA, Waggoner LE, Leng HT et al (2020) An activity-based nanosensor for traumatic brain injury. ACS Sensors 5:686–692. https://doi.org/10.1021/acssensors.9b01812

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson VE, Stewart W, Smith DH (2012) Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol 22:142–149. https://doi.org/10.1111/j.1750-3639.2011.00513.x

Article  CAS  PubMed  Google Scholar 

Mckee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. In: Jordan Grafman AMS (ed) Handbook of clinical neurology. Elsevier, Amsterdam

Google Scholar 

Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9:211–221. https://doi.org/10.1038/nrneurol.2013.29

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275:316–327. https://doi.org/10.1016/j.expneurol.2015.08.018

Article  CAS  PubMed  Google Scholar 

Graham NS, Sharp DJ (2019) Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J Neurol Neurosurg Psychiatry 90:1221–1233. https://doi.org/10.1136/jnnp-2017-317557

Article  PubMed  Google Scholar 

Mouzon BC, Bachmeier C, Ferro A et al (2014) Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 75:241–254. https://doi.org/10.1002/ana.24064

Article  PubMed  Google Scholar 

Uryu K, Chen X-H, Martinez D et al (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 208:185–192. https://doi.org/10.1016/j.expneurol.2007.06.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith DH, Chen X, Iwata A, Graham DI (2003) Amyloid β accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077. https://doi.org/10.3171/jns.2003.98.5.1072

Article  CAS  PubMed  Google Scholar 

Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function of α-secretases. In: Harris JR, Fahrenholz F (eds) Alzheimer’s disease, subcellular biochemistry. Springer, Boston

Google Scholar 

Kowalska A (2004) The beta-amyloid cascade hypothesis: a sequence of events leading to neurodegeneration in Alzheimer’s disease. Neurol Neurochir Pol 38:405–411

PubMed  Google Scholar 

Edwards G, Moreno-Gonzalez I, Soto C (2017) Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun 483:1137–1142. https://doi.org/10.1016/j.bbrc.2016.07.123

Article  CAS  PubMed  Google Scholar 

Ono M, Haratake M, Mori H, Nakayama M (2007) Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorganic Med Chem 15:6802–6809. https://doi.org/10.1016/j.bmc.2007.07.052

Article  CAS  Google Scholar 

Ono M, Watanabe R, Kawashima H et al (2009) Fluoro-pegylated chalcones as positron emission tomography probes for in vivo imaging of β-amyloid plaques in Alzheimer’s disease. J Med Chem 52:6394–6401. https://doi.org/10.1021/jm901057p

Article  CAS  PubMed  Google Scholar 

Ono M, Ikeoka R, Watanabe H et al (2010) Synthesis and evaluation of novel chalcone derivatives with 99mTc/Re complexes as potential probes for detection of β-amyloid plaques. ACS Chem Neurosci 1:598–607. https://doi.org/10.1021/cn100042d

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fosso MY, McCarty K, Head E et al (2016) Differential effects of structural modifications on the competition of chalcones for the PIB amyloid imaging ligand-binding site in Alzheimer’s disease brain and synthetic Aβ fibrils. ACS Chem Neurosci 7:171–176. https://doi.org/10.1021/acschemneuro.5b00266

Article  CAS  PubMed  Google Scholar 

Viet MH, Chen C-Y, Hu C-K et al (2013) Discovery of dihydrochalcone as potential lead for Alzheimer’s disease: in silico and in vitro study. PLoS ONE 8:e79151. https://doi.org/10.1371/journal.pone.0079151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chauhan K, Tiwari AK, Chadha N et al (2018) Chalcone based homodimeric PET agent, 11 C-(Chal) 2 DEA-Me, for beta amyloid imaging: synthesis and bioevaluation. Mol Pharm 15:1515–1525. https://doi.org/10.1021/acs.molpharmaceut.7b01070

Article  CAS  PubMed  Google Scholar 

Mann G, Chauhan K, Kumar V et al (2022) Bio-evaluation of 99mTc-labeled homodimeric chalcone derivative as amyloid-β-targeting probe. Front Med. https://doi.org/10.3389/fmed.2022.813465

Article  Google Scholar 

Chauhan K, Datta A, Adhikari A et al (2014) 68 Ga based probe for Alzheimer’s disease: synthesis and preclinical evaluation of homodimeric chalcone in β-amyloid imaging. Org Biomol Chem 12:7328. https://doi.org/10.1039/C4OB00941J

Article  CAS  PubMed  Google Scholar 

Fuchigami T, Yamashita Y, Haratake M, Ono M, Yoshida S, Nakayama M et al (2014) Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT. Bioorganic Med Chem 22:2622–2628

Article  CAS  Google Scholar 

Watanabe H, Saji H, Ono M (2018) Novel fluorescence probes based on the chalcone scaffold for in vitro staining of β-amyloid plaques. Bioorg Med Chem Lett 28:3242–3246. https://doi.org/10.1016/j.bmcl.2018.08.009

Article  CAS  PubMed  Google Scholar 

Kadiyala KG, Tyagi T, Kakkar D et al (2015) Picolinic acid based acyclic bifunctional chelating agent and its methionine conjugate as potential SPECT imaging agents: syntheses and preclinical evaluation. RSC Adv 5:33963–33973. https://doi.org/10.1039/C4RA13690J

Article  CAS  Google Scholar 

Sneddon D, Cornelissen B (2021) Emerging chelators for nuclear imaging. Curr Opin Chem Biol 63:152–162. https://doi.org/10.1016/j.cbpa.2021.03.001

Article  CAS  PubMed  Google Scholar 

Comba P, Grimm L, Orvig C et al (2016) Synthesis and coordination chemistry of hexadentate picolinic acid based bispidine ligands. Inorg Chem 55:12531–12543. https://doi.org/10.1021/acs.inorgchem.6b01787

Article  CAS  PubMed  Google Scholar 

Boros E, Ferreira CL, Cawthray JF et al (2010) Acyclic chelate with ideal properties for 68 Ga pet imaging agent elaboration. J Am Chem Soc 132:15726–15733. https://doi.org/10.1021/ja106399h

Article  CAS  PubMed  Google Scholar 

Mann G, Kadiyala KG, Thirumal M et al (2021) Receptor mapping using methoxy phenyl piperazine derivative: Preclinical PET imaging. Bioorg Chem 117:105429. https://doi.org/10.1016/j.bioorg.2021.105429

Article  CAS  PubMed  Google Scholar 

Levy Nogueira M, Hamraz M, Abolhassani M et al (2018) Mechanical stress increases brain amyloid β, tau, and α-synuclein concentrations in wild-type mice. Alzheimer’s Dement 14:444–453. https://doi.org/10.1016/j.jalz.2017.11.003

Article  Google Scholar 

Clement CG, Truong LD (2014) An evaluation of congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol 45:1766–1772. https://doi.org/10.1016/j.humpath.2014.04.016

Article  CAS  PubMed  Google Scholar 

Skovronsky DM, Zhang B, Kung MP et al (2000) In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97:7609–7614. https://doi.org/10.1073/pnas.97.13.7609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ono M, Hayashi S, Kimura H et al (2009) Push–pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer’s brains. Bioorg Med Chem 17:7002–7007. https://doi.org/10.1016/j.bmc.2009.08.032

Article  CAS  PubMed  Google Scholar 

Chen F, Bai M, Liu W et al (2021) H2dpa derivatives containing pentadentate ligands: an acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. Eur J Med Chem 224:113702. https://doi.org/10.1016/j.ejmech.2021.113702

Article  CAS  PubMed  Google Scholar 

Jacques AV, Stefanes NM, Walter LO et al (2021) Synthesis of chalcones derived from 1-naphthylacetophenone and evaluation of their cytotoxic and apoptotic effects in acute leukemia cell lines. Bioorg Chem 116:105315. https://doi.org/10.1016/j.bioorg.2021.105315

Article  CAS  PubMed  Google Scholar 

Yu F, Zhang Y, Chuang D-M (2012) Lithium reduces BACE1 Overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma 29:2342–2351. https://doi.org/10.1089/neu.2012.2449

Article

留言 (0)

沒有登入
gif