Differential Expression of Circulating miR-221-3p, miR-146a-5p, miR-206 and Their Diagnostic Value in Lung Cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49.

PubMed  Google Scholar 

Singh N, Agrawal S, Jiwnani S, Khosla D, Malik PS, Mohan A, et al. Lung cancer in India. J Thorac Oncol. 2021;16(8):1250–66.

PubMed  Google Scholar 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.

PubMed  Google Scholar 

Mir MH, Siraj F, Mehfooz N, Sofi MA, Syed NA, Dar NA, et al. Clinicopathological profile of non-small cell lung cancer and the changing trends in its histopathology: experience from a tertiary care cancer center in Kashmir, India. Cureus. 2023;15:e34120.

PubMed  PubMed Central  Google Scholar 

Khan NA, Ahmad SN, Dar NA, Masoodi SR, Lone MM. Changing pattern of common cancers in the last five years in Kashmir, India: a retrospective observational study. Indian J Med Paediatr Oncol. 2021;42(05):439–43.

Google Scholar 

Koul PA, Hajni MR, Sheikh MA, Khan UH, Shah A, Khan Y, et al. Hookah smoking and lung cancer in the Kashmir valley of the Indian subcontinent. Asian Pac J Cancer Prev. 2011;12(2):519–24.

PubMed  Google Scholar 

Gnagnarella P, Caini S, Maisonneuve P, Gandini S. Carcinogenicity of high consumption of meat and lung cancer risk among non-smokers: a comprehensive meta-analysis. Nutr Cancer. 2018;70(1):1–3.

CAS  PubMed  Google Scholar 

Cai H, Sobue T, Kitamura T, Ishihara J, Sawada N, Iwasaki M, et al. Association between meat and saturated fatty acid intake and lung cancer risk: the Japan Public Health Center-based prospective study. Int J Cancer. 2020;147(11):3019–28.

CAS  PubMed  Google Scholar 

Mehta SS, Hodgson ME, Lunn RM, Ashley CE, Arroyave WD, Sandler DP, et al. Indoor wood-burning from stoves and fireplaces and incident lung cancer among Sister Study participants. Environ Int. 2023;178: 108128.

PubMed  Google Scholar 

Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. Int J Mol Sci. 2021;22(16):8661.

CAS  PubMed  PubMed Central  Google Scholar 

Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276.

CAS  PubMed  PubMed Central  Google Scholar 

Fehlmann T, Kahraman M, Ludwig N, Backes C, Galata V, Keller V, et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol. 2020;6(5):714–23.

PubMed  Google Scholar 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

CAS  PubMed  PubMed Central  Google Scholar 

Wu KL, Tsai YM, Lien CT, Kuo PL, Hung JY. The roles of MicroRNA in lung cancer. Int J Mol Sci. 2019;20(7):1611.

CAS  PubMed  PubMed Central  Google Scholar 

Van Roosbroeck K, Calin GA. Cancer hallmarks and microRNAs: the therapeutic connection. Adv Cancer Res. 2017;1(135):119–49.

Google Scholar 

Solé C, Lawrie CH. MicroRNAs in metastasis and the tumour microenvironment. Int J Mol Sci. 2021;22(9):4859.

PubMed  PubMed Central  Google Scholar 

Zhang X, Li Y, Qi P, Ma Z. Biology of MiR-17-92 cluster and its progress in lung cancer. Int J Med Sci. 2018;15(13):1443.

CAS  PubMed  PubMed Central  Google Scholar 

Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 2007;26(41):6099–105.

CAS  PubMed  Google Scholar 

Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Can Res. 2005;65(21):9628–32.

CAS  Google Scholar 

Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. Mol Therapy-Nucleic Acids. 2022;27:1191–224.

Google Scholar 

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2003;12(9):735–9.

Google Scholar 

Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775–83.

CAS  PubMed  PubMed Central  Google Scholar 

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.

CAS  PubMed  Google Scholar 

Duy J, Koehler JW, Honko AN, Minogue TD. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics. 2015;16:1–9.

CAS  Google Scholar 

Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005;33(20):e179.

PubMed  PubMed Central  Google Scholar 

Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011;95(1):15.

Google Scholar 

Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3(1):1–2.

Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.

CAS  PubMed  Google Scholar 

Shi L, Xu Z, Wu G, Chen X, Huang Y, Wang Y, et al. up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin. J BMC Cancer. 2017;17(1):1–4.

Google Scholar 

Iacona JR, Monteleone NJ, Lutz CS. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells. Oncotarget. 2018;9(42):26751.

PubMed  PubMed Central  Google Scholar 

Wang RJ, Zheng YH, Wang P, Zhang JZ. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(1):765.

PubMed  PubMed Central  Google Scholar 

Liu X, Liu B, Li R, Wang F, Wang N, Zhang M, et al. miR-146a-5p plays an oncogenic role in NSCLC via suppression of TRAF6. Front Cell Dev Biol. 2020;2(8):847.

Google Scholar 

Wu Q, Yu L, Lin X, Zheng Q, Zhang S, Chen D, et al. Combination of serum miRNAs with serum exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag Res. 2020;21:485–95.

Google Scholar 

Chen QY, Jiao DM, Wang J, Hu H, Tang X, Chen J, et al. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget. 2016;7(17):24510.

PubMed  PubMed Central  Google Scholar 

Liao M, Peng L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C. Cell Mol Biol Lett. 2020;25(1):1–3.

Google Scholar 

Zhang YJ, Xu F, Zhang YJ, Li HB, Han JC, Li L. miR-206 inhibits non small cell lung cancer cell proliferation and invasion by targeting SOX9. Int J Clin Exp Med. 2015;8(6):9107.

PubMed  PubMed Central  Google Scholar 

Xue D, Yang Y, Liu Y, Wang P, Dai Y, Liu Q, et al. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling. Oncotarget. 2016;7(48):79805.

PubMed  PubMed Central  Google Scholar 

Sun YJ, Li J, Chen CH. Effects of miR-221 on the apoptosis of non-small cell lung cancer cells by lncRNA HOTAIR. Eur Rev Med Pharmacol Sci. 2019;23(10):4226.

PubMed  Google Scholar 

Yin G, Zhang B, Li J. miR-221-3p promotes the cell growth of non-small cell lung cancer by targeting p27. Mol Med Rep. 2019;20(1):604–12.

CAS  PubMed  PubMed Central  Google Scholar 

Guo Y, Wang G, Wang Z, Ding X, Qian L, Li Y, et al. Reck-Notch1 signaling mediates miR-221/222 regulation of lung cancer stem cells in NSCLC. Front Cell Dev Biol. 2021;9: 663279.

PubMed  PubMed Central  Google Scholar 

Zhu Z, Zhang D, Lee H, Menon AA, Wu J, Hu K, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leucoc Biol. 2017;101(6):1349–59.

CAS  Google Scholar 

Yamashita R, Sato M, Kakumu T, Hase T, Yogo N, Maruyama E, et al. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells. Cancer Med. 2015;4(4):551–64.

CAS  PubMed  PubMed Central  Google Scholar 

McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–40.

CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif