Effect of coffee, tea and alcohol intake on circulating inflammatory cytokines: a two sample-Mendelian randomization study

Voskoboinik A, Kalman JM, Kistler PM. Caffeine and arrhythmias time to grind the data. JACC Clin Electrophysiol. 2018;4:425–32. https://doi.org/10.1016/j.jacep.2018.01.012.

Article  PubMed  Google Scholar 

Liczbinski P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind Crops Prod 2022; 175. https://doi.org/10.1016/j.indcrop.2021.114265.

de Mejia EG, Vinicio Ramirez-Mares M. Impact of caffeine and coffee on our health. Trends Endocrinol Metab. 2014;25:489–92. https://doi.org/10.1016/j.tem.2014.07.003.

Article  CAS  Google Scholar 

Chieng D, Kistler PM. Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc Med. 2022;32:399–405. https://doi.org/10.1016/j.tcm.2021.08.004.

Article  CAS  PubMed  Google Scholar 

Machado F, Coimbra MA, del Castillo MD, Coreta-Gomes F. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox. Crit Rev Food Sci Nutr 2023. https://doi.org/10.1080/10408398.2023.2221734.

Saric S, Notay M, Sivamani RK. Green tea and other tea polyphenols: effects on sebum production and acne vulgaris. Antioxidants 2017; 6. https://doi.org/10.3390/antiox6010002.

Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: a concise review. J Food Biochem 2022; 46. https://doi.org/10.1111/jfbc.14264.

Zhao X, Zhou R, Li H, Fan Y, Sun Y, Hu X et al. The effects of moderate alcohol consumption on circulating metabolites and gut microbiota in patients with coronary artery disease. Front Cardiovasc Med 2021; 8. https://doi.org/10.3389/fcvm.2021.767692.

Visontay R, Mewton L, Sunderland M, Bell S, Britton A, Osman B et al. A comprehensive evaluation of the longitudinal association between alcohol consumption and a measure of inflammation: Multiverse and vibration of effects analyses. Drug Alcohol Depend 2023; 247. https://doi.org/10.1016/j.drugalcdep.2023.109886.

Chen X, Kong J, Pan J, Huang K, Zhou W, Diao X et al. Kidney damage causally affects the brain cortical structure: a mendelian randomization study. eBioMedicine 2021; 72. https://doi.org/10.1016/j.ebiom.2021.103592.

Richmond RC, Smith GD. Mendelian randomization: concepts and scope. Cold Spring Harbor Perspect Med 2022; 12. https://doi.org/10.1101/cshperspect.a040501.

Sekula P, Del Greco FM, Pattaro C, Koettgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27:3253–65. https://doi.org/10.1681/asn.2016010098.

Article  PubMed  PubMed Central  Google Scholar 

Cai J, Li X, Wu S, Tian Y, Zhang Y, Wei Z, et al. Assessing the causal association between human blood metabolites and the risk of epilepsy. J Transl Med. 2022;20:437 https://doi.org/10.1186/s12967-022-03648-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods. 2019;10:486–96. https://doi.org/10.1002/jrsm.1346.

Article  PubMed  PubMed Central  Google Scholar 

Evans DM, Smith GD. Mendelian randomization: new applications in the coming age of hypothesis-free causality. In: Chakravarti A, Green E (eds). Annual Review of Genomics and Human Genetics, Vol 16, vol. 16, 2015, pp 327–50.

Elsworth BL, Lyon MS, Alexander T, Liu Y, Matthews P, Hallett J et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv 2020. https://doi.org/10.1101/2020.08.10.244293.

Hemani G, Zhengn J, Elsworth B, Wade KH, Haberland V, Baird D et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018; 7. https://doi.org/10.7554/eLife.34408.

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9. https://doi.org/10.1038/s41586-018-0579-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahola-Olli AV, Wurtz P, Havulinna AS, Aalto K, Pitkanen N, Lehtimaki T, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet. 2017;100:40–50. https://doi.org/10.1016/j.ajhg.2016.11.007.

Article  CAS  PubMed  Google Scholar 

Chen X, Hong X, Gao W, Luo S, Cai J, Liu G et al. Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: a Mendelian randomization study. J Transl Med 2022; 20. https://doi.org/10.1186/s12967-022-03407-6.

Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65. https://doi.org/10.1002/gepi.21758.

Article  PubMed  PubMed Central  Google Scholar 

Xiang M, Wang Y, Gao Z, Wang J, Chen Q, Sun Z, et al. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: a mendelian randomization. Front Immunol. 2022;13:985729 https://doi.org/10.3389/fimmu.2022.985729.

Article  CAS  PubMed  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:1196–1196. https://doi.org/10.1038/s41588-018-0164-2.

Article  CAS  PubMed  Google Scholar 

Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40:740–52. https://doi.org/10.1093/ije/dyq151.

Article  PubMed  Google Scholar 

Li F, Hatano T, Hattori N. Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson’s disease based on network pharmacology approach. J Funct Foods 2021; 87. https://doi.org/10.1016/j.jff.2021.104764.

Gavrieli A, Yannakoulia M, Fragopoulou E, Margaritopoulos D, Chamberland JP, Kaisari P, et al. Caffeinated coffee does not acutely affect energy intake, appetite, or inflammation but prevents serum cortisol concentrations from falling in healthy men. J Nutr. 2011;141:703–7. https://doi.org/10.3945/jn.110.137323.

Article  CAS  PubMed  Google Scholar 

Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr. 2010;91:950–7. https://doi.org/10.3945/ajcn.2009.28548.

Article  CAS  PubMed  Google Scholar 

Paiva C, Beserra B, Reis C, Dorea JG, Da Costa T, Amato AA. Consumption of coffee or caffeine and serum concentration of inflammatory markers: a systematic review. Crit Rev Food Sci Nutr. 2019;59:652–63. https://doi.org/10.1080/10408398.2017.1386159.

Article  CAS  PubMed  Google Scholar 

Xiang C, Li H, Tang W Targeting CSF-1R represents an effective strategy in modulating inflammatory diseases. Pharmacol Res 2023; 187. https://doi.org/10.1016/j.phrs.2022.106566.

Deng X, Yang Q, Wang Y, Yang Y, Pei G, Zhu H et al. Association of plasma macrophage colony-stimulating factor with cardiovascular morbidity and all-cause mortality in chronic hemodialysis patients. BMC Nephrol 2019; 20. https://doi.org/10.1186/s12882-019-1510-z.

Irvine KM, Andrews MR, Fernandez-Rojo MA, Schroder K, Burns CJ, Su S, et al. Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. J Leukoc Biol. 2009;85:278–88. https://doi.org/10.1189/jlb.0808497.

Article  CAS  PubMed  Google Scholar 

Yoon CS, Keun LS. Concurrent innate immunity activation and anti-inflammation effects of dialyzed coffee extract in RAW 264.7 cells, murine macrophage lineage. Korean J Oral Maxillofac Pathol. 2017;41:121–9. https://doi.org/10.17779/kaomp.2017.41.3.003.

Article  Google Scholar 

Sukowati CHC, Patti R, Pascut D, Ladju RB, Tarchi P, Zanotta N, et al. Serum stem cell growth factor beta for the prediction of therapy response in hepatocellular carcinoma. Biomed Res Int. 2018;2018:6435482 https://doi.org/10.1155/2018/6435482.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarantino G, Citro V, Balsano C, Capone D. Could SCGF-beta levels be associated with inflammation markers and insulin resistance in male patients suffering from obesity-related NAFLD? Diagnostics 2020; 10. https://doi.org/10.3390/diagnostics10060395.

Schiro A, Wilkinson FL, Weston R, Smyth JV, Serracino-Inglott F, Alexander MY. Elevated levels of endothelialderived microparticles, and serum CXCL9 and SCGF-beta are associated with unstable asymptomatic carotid plaques. Sci Rep 2015; 5. https://doi.org/10.1038/srep16658.

Chen ZJ, Hu ZL, Hu YQ, Sheng YX, Li Y, Song JP. Novel potential biomarker of adult cardiac surgery-associated acute kidney injury. Front Physiol 2020; 11. https://doi.org/10.3389/fphys.2020.587204.

Beyer K, Baukloh AK, Stoyanova A, Kamphues C, Sattler A, Kotsch K. Interactions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with the immune system: implications for inflammation and cancer. Cancers 2019; 11. https://doi.org/10.3390/cancers11081161.

Rushworth SA, Micheau O. Molecular crosstalk between TRAIL and natural antioxidants in the treatment of cancer. Br J Pharmacol. 2009;157:1186–8. https://doi.org/10.1111/j.1476-5381.2009.00266.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jong KXJ, Mohamed EHM, Ibrahim ZA. Escaping cell death via TRAIL decoy receptors: a systematic review of their roles and expressions in colorectal cancer. Apoptosis. 2022;27:787–99. https://doi.org/10.1007/s10495-022-01774-5.

Article  PubMed  Google Scholar 

Forde H, Harper E, Rochfort KD, Wallace RG, Davenport C, Smith D, et al. TRAIL inhibits oxidative stress in human aortic endothelial cells exposed to pro-inflammatory stimuli. Physiol Rep. 2020;8:e14612 https://doi.org/10.14814/phy2.14612.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang YH, Park MG, Noh KH, Park HR, Lee HW, Son SM, et al. Low serum TNF-related apoptosis-inducing ligand (TRAIL) levels are associated with acute ischemic stroke severity. Atherosclerosis. 2015;240:228–33. https://doi.org/10.1016/j.atherosclerosis.2015.03.028.

Article  CAS  PubMed  Google Scholar 

Hu D, Xia SL, Shao XX, Yu LQ, Lin XX, Guo M, et al. Association of ulcerative colitis with TNF-related apoptosis inducing ligand (TRAIL) gene polymorphisms and plasma soluble TRAIL levels in Chinese Han population. Eur Rev Med Pharmacol Sci. 2015;19:467–76.

CAS  PubMed  Google Scholar 

Um HJ, Oh JH, Kim YN, Choi YH, Kim SH, Park JW, et al. The coffee diterpene kahweol sensitizes TRAIL-induced apoptosis in renal carcinoma Caki cells through down-regulation of Bcl-2 and c-FLIP. Chem Biol Interact. 2010;186:36–42. https://doi.org/10.1016/j.cbi.2010.04.013.

Article  CAS  PubMed  Google Scholar 

El-Elimat T, Qasem WM, Al-Sawalha NA, AbuAlSamen MM, Munaiem RT, Al-Qiam R, et al. A prospective non-randomized open-label comparative study of the effects of matcha tea on overweight and obese individuals: a pilot observational study. Plant Foods Hum Nutr. 2022;77:447–54. https://doi.org/10.1007/s11130-022-00998-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012;32:421–7. https://doi.org/10.1016/j.nutres.2012.05.007.

Article  CAS  PubMed  Google Scholar 

Sirotkin AV, Kolesarova A. The anti-obesity and health-promoting effects of tea and coffee. Physiol Res. 2021;70:161–8. https://doi.org/10.33549/physiolres.934674.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif