The troglitazone derivative EP13 disrupts energy metabolism through respiratory chain complex I inhibition in breast cancer cells and potentiates the antiproliferative effect of glycolysis inhibitntriors

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

Article  PubMed  Google Scholar 

Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–50.

Article  PubMed  Google Scholar 

Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377:1836–46.

Article  PubMed  PubMed Central  Google Scholar 

Derakhshani A, Rezaei Z, Safarpour H, Sabri M, Mir A, Sanati MA, et al. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J Cell Physiol. 2020;235:3142–56.

Article  CAS  PubMed  Google Scholar 

Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med Press). 2016;8:93–107.

CAS  PubMed  Google Scholar 

Gupta GK, Collier AL, Lee D, Hoefer RA, Zheleva V, van Reesema LL, et al. Perspectives on triple-negative breast cancer: current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel). 2020;12:2392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rizzo A, Cusmai A, Acquafredda S, Rinaldi L, Palmiotti G. Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential. Expert Opin Investig Drugs. 2022;31:495–8.

Article  CAS  PubMed  Google Scholar 

Rizzo A, Ricci AD, Lanotte L, Lombardi L, Di Federico A, Brandi G, et al. Immune-based combinations for metastatic triple negative breast cancer in clinical trials: current knowledge and therapeutic prospects. Expert Opin Investig Drugs. 2022;31:557–65.

Article  CAS  PubMed  Google Scholar 

McGuinness JE, Kalinsky K. Antibody-drug conjugates in metastatic triple negative breast cancer: a spotlight on sacituzumab govitecan, ladiratuzumab vedotin, and trastuzumab deruxtecan. Expert Opin Biol Ther. 2021;21:903–13.

Article  CAS  PubMed  Google Scholar 

Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599:1745–57.

Article  CAS  PubMed  Google Scholar 

Marchetti P, Guerreschi P, Mortier L, Kluza J. Integration of mitochondrial targeting for molecular cancer therapeutics. Int J Cell Biol. 2015;2015: 283145.

Article  PubMed  PubMed Central  Google Scholar 

Feng H, Wang X, Chen J, Cui J, Gao T, Gao Y, et al. Nuclear imaging of glucose metabolism: beyond 18F-FDG. Contrast Media Mol Imaging. 2019;2019:7954854.

Article  PubMed  PubMed Central  Google Scholar 

Fürnsinn C, Brunmair B, Neschen S, Roden M, Waldhäusl W. Troglitazone directly inhibits CO(2) production from glucose and palmitate in isolated rat skeletal muscle. J Pharmacol Exp Ther. 2000;293:487–93.

PubMed  Google Scholar 

Asano T, Wakisaka M, Yoshinari M, Nakamura S, Doi Y, Fujishima M. Troglitazone enhances glycolysis and improves intracellular glucose metabolism in rat mesangial cells. Metabolism. 2000;49:308–13.

Article  CAS  PubMed  Google Scholar 

Gottfried E, Rogenhofer S, Waibel H, Kunz-Schughart LA, Reichle A, Wehrstein M, et al. Pioglitazone modulates tumor cell metabolism and proliferation in multicellular tumor spheroids. Cancer Chemother Pharmacol. 2011;67:117–26.

Article  CAS  PubMed  Google Scholar 

Friday E, Oliver R, Welbourne T, Turturro F. Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: Relationship to mitochondrial membrane potential. J Cell Physiol. 2011;226:511–9.

Article  CAS  PubMed  Google Scholar 

Mazerbourg S, Kuntz S, Grillier-Vuissoz I, Berthe A, Geoffroy M, Flament S, et al. Reprofiling of troglitazone towards more active and less toxic derivatives: a new hope for cancer treatment? Curr Top Med Chem. 2016;16:2115–24.

Article  CAS  PubMed  Google Scholar 

Yang C-C, Ku C-Y, Wei S, Shiau C-W, Chen C-S, Pinzone JJ, et al. Peroxisome proliferator-activated receptor gamma-independent repression of prostate-specific antigen expression by thiazolidinediones in prostate cancer cells. Mol Pharmacol. 2006;69:1564–70.

Article  CAS  PubMed  Google Scholar 

Colin-Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, et al. PPARγ-inactive Δ2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog. 2015;54:393–404.

Article  CAS  PubMed  Google Scholar 

Bordessa A, Colin-Cassin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Husson G, et al. Optimization of troglitazone derivatives as potent anti-proliferative agents: towards more active and less toxic compounds. Eur J Med Chem. 2014;83:129–40.

Article  CAS  PubMed  Google Scholar 

Salamone S, Colin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Flament S, et al. Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur J Med Chem. 2012;51:206–15.

Article  CAS  PubMed  Google Scholar 

Dupommier D, Muller C, Comoy C, Mazerbourg S, Bordessa A, Piquard E, et al. New desulfured troglitazone derivatives: Improved synthesis and biological evaluation. Eur J Med Chem. 2020;187: 111939.

Article  CAS  PubMed  Google Scholar 

Khamari R, Trinh A, Gabert PE, Corazao-Rozas P, Riveros-Cruz S, Balayssac S, et al. Glucose metabolism and NRF2 coordinate the antioxidant response in melanoma resistant to MAPK inhibitors. Cell Death Dis. 2018;9:325.

Article  PubMed  PubMed Central  Google Scholar 

Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58:621–81.

Article  CAS  PubMed  Google Scholar 

Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

Article  CAS  PubMed  Google Scholar 

Moreno-Sánchez R, Marín-Hernández Á, Mazo-Monsalvo I, Saavedra E, Rodríguez-Enríquez S. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochimica et Biophysica Acta. 2017;1861:3221–36.

Article  PubMed  Google Scholar 

Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu R-H, et al. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res. 2014;16:434.

Article  PubMed  PubMed Central  Google Scholar 

Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL, et al. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep. 2016;14:1590–601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin SD, McGee SL. A systematic flux analysis approach to identify metabolic vulnerabilities in human breast cancer cell lines. Cancer Metab. 2019;7:12.

Article  PubMed  PubMed Central  Google Scholar 

Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, et al. Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol. 2005;70:177–88.

Article  CAS  PubMed  Google Scholar 

Moon S-H, Lee SJ, Jung K-H, Quach CHT, Park J-W, Lee JH, et al. Troglitazone stimulates cancer cell uptake of 18 F-FDG by suppressing mitochondrial respiration and augments sensitivity to glucose restriction. J Nucl Med. 2016;57:129–35.

Article  CAS  PubMed  Google Scholar 

Divakaruni AS, Wiley SE, Rogers GW, Andreyev AY, Petrosyan S, Loviscach M, et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci USA. 2013;110:5422–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shannon CE, Daniele G, Galindo C, Abdul-Ghani MA, DeFronzo RA, Norton L. Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS J. 2017;284:451–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I. Diabetes. 2004;53:1052–9.

Article  CAS  PubMed  Google Scholar 

Scatena R, Bottoni P, Martorana GE, Ferrari F, De Sole P, Rossi C, et al. Mitochondrial respiratory chain dysfunction, a non-receptor-mediated effect of synthetic PPAR-ligands: biochemical and pharmacologi

留言 (0)

沒有登入
gif