Detection of Lactic Acid Bacteria in Metasandstone and Limestone Caves of Chapada Diamantina, Brazil

Melo TA, dos Santos TF, Pereira LR et al (2017) Functional profile evaluation of Lactobacillus fermentum TCUESC01: a new potential probiotic strain isolated during cocoa fermentation. Biomed Res Int 2017:1–7. https://doi.org/10.1155/2017/5165916

Article  CAS  Google Scholar 

Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 9:12. https://doi.org/10.1186/s13099-017-0162-4

Article  PubMed  PubMed Central  Google Scholar 

Ringø E, Løvmo L, Kristiansen M et al (2010) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac Res 41:451–467. https://doi.org/10.1111/j.1365-2109.2009.02339.x

Article  Google Scholar 

Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10:314. https://doi.org/10.1038/s41598-019-57210-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhakta JN, Bhattacharya S, Lahiri S, Panigrahi AK (2022) Probiotic characterization of arsenic-resistant lactic acid bacteria for possible application as arsenic bioremediation tool in fish for safe fish food production. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-022-09921-9

Article  PubMed  Google Scholar 

Daranas N, Roselló G, Cabrefiga J et al (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174:92–105. https://doi.org/10.1111/aab.12476

Article  PubMed  Google Scholar 

Kharazian ZA, SalehiJouzani G, Aghdasi M et al (2017) Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control 110:33–43. https://doi.org/10.1016/j.biocontrol.2017.04.004

Article  Google Scholar 

Hwanhlem N, Chobert J-M, H-Kittikun A, (2014) Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control 41:202–211. https://doi.org/10.1016/j.foodcont.2014.01.021

Article  CAS  Google Scholar 

Chen Y-S, Yanagida F, Shinohara T (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200. https://doi.org/10.1111/j.1472-765X.2005.01653.x

Article  CAS  PubMed  Google Scholar 

Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL (2017) From yogurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol Biochem 111:1–9. https://doi.org/10.1016/j.soilbio.2017.03.015

Article  CAS  Google Scholar 

Northup DE, Barns SM, Yu LE et al (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5:1071–1086

Article  PubMed  Google Scholar 

Banskar S, Bhute SS, Suryavanshi MV et al (2016) Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci Rep 6:36948. https://doi.org/10.1038/srep36948

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borda D, Năstase-Bucur R, Spînu M et al (2014) Aerosolized microbes from organic rich materials: case study of Bat Guano from caves in Romania. J Cave Karst Stud 76:114–126. https://doi.org/10.4311/2013MB0116

Article  Google Scholar 

Sakoui S, Derdak R, Addoum B et al (2022) The first study of probiotic properties and biological activities of lactic acid bacteria isolated from Bat Guano from Er-rachidia. Morocco LWT 159:113224. https://doi.org/10.1016/j.lwt.2022.113224

Article  CAS  Google Scholar 

Newman MM, Kloepper LN, Duncan M et al (2018) Variation in bat guano bacterial community composition with depth. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00914

Article  PubMed  PubMed Central  Google Scholar 

Dong Y, Chen Q, Fang Z et al (2022) Gut bacteria reflect the adaptation of Diestrammena japanica (Orthoptera: Rhaphidophoridae) to the cave. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1016608

Article  PubMed  PubMed Central  Google Scholar 

Lemes CGC, Villa MM, Felestrino ÉB et al (2021) 16S rRNA gene amplicon sequencing data of the iron Quadrangle Ferruginous Caves (Brazil) shows the importance of conserving this singular and threatened geosystem. Diversity (Basel) 13:494. https://doi.org/10.3390/d13100494

Article  CAS  Google Scholar 

Mudgil D, Paul D, Baskar S et al (2022) Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya India. Arch Microbiol 204:495. https://doi.org/10.1007/s00203-022-02916-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marques E, Dias J, Gross E et al (2019) Purple sulfur bacteria dominate microbial community in Brazilian limestone cave. Microorganisms 7:29. https://doi.org/10.3390/microorganisms7020029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng J, Wittouck S, Salvetti E et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

Article  CAS  PubMed  Google Scholar 

Walter J, Hertel C, Tannock GW et al (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585. https://doi.org/10.1128/AEM.67.6.2578-2585.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endo A, Okada S (2005) Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis. J Biosci Bioeng 99:216–221. https://doi.org/10.1263/jbb.99.216

Article  CAS  PubMed  Google Scholar 

de Marques E LS, Gross E, Dias JCT, et al (2018) Ammonia oxidation ( amoA) and nitrogen fixation ( nifH ) genes along metasandstone and limestone caves of Brazil. Geomicrobiol J 35:869–878. https://doi.org/10.1080/01490451.2018.1482386

Article  CAS  Google Scholar 

MacLeod RA, Snell EE (1947) Some mineral requirements of the lactic acid bacteria. J Biol Chem 170:351–365

Article  CAS  Google Scholar 

Loubiere P, Cocaign-Bousquet M, Matos J et al (1997) Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. J Appl Microbiol 82:95–100

Article  CAS  Google Scholar 

Leroy F, De Vuyst L (2001) Growth of the bacteriocin-producing Lactobacillus sakei Strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl Environ Microbiol 67:4407–4413. https://doi.org/10.1128/AEM.67.10.4407-4413.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eltink E, Castro M, Montefeltro FC et al (2020) Mammalian fossils from Gruta do Ioiô cave and past of the Chapada Diamantina, northeastern Brazil, using taphonomy, radiocarbon dating and paleoecology. J South Am Earth Sci 98:102379. https://doi.org/10.1016/j.jsames.2019.102379

Article  CAS  Google Scholar 

Altın G, Nikerel E, Şahin F (2017) Draft genome sequence of magnesium-dissolving Lactococcus garvieae A1, isolated from soil. Genome Announc. https://doi.org/10.1128/genomeA.00386-17

Article  PubMed  PubMed Central  Google Scholar 

Serna-Cock L, de Stouvenel AR (2006) Lactic acid production by a strain of Lactococcus lactis subs lactis isolated from sugar cane plants. Electron J Biotechnol 9:40–45. https://doi.org/10.2225/vol9-issue1-fulltext-10

Article  CAS  Google Scholar 

Süle J, Kõrösi T, Hucker A, Varga L (2014) Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Braz J Microbiol 45:1023–1030. https://doi.org/10.1590/S1517-83822014000300035

Article  PubMed  PubMed Central  Google Scholar 

Tanasupawat S, Shida O, Okada S, Komagata K (2000) Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 50:1479–1485. https://doi.org/10.1099/00207713-50-4-1479

Article  CAS  PubMed  Google Scholar 

Wenzler E, Kamboj K, Balada-Llasat J-M (2015) Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus Bacteremia. Int J Infect Dis 35:93–95. https://doi.org/10.1016/j.ijid.2015.04.016

Article  PubMed  Google Scholar 

Banerjee S, Joshi S (2014) Ultrastructural analysis of calcite crystal patterns formed bybiofilm bacteria associated with cave speleothems. J Microsc Ultrastruct 2:217. https://doi.org/10.1016/j.jmau.2014.06.001

Article  Google Scholar 

Magnusson J (2002) Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int J Syst Evol Microbiol 52:831–834. https://doi.org/10.1099/ijs.0.02015-0

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif