Escaping from CRISPR–Cas-mediated knockout: the facts, mechanisms, and applications

Charpentier E, Richter H, van der Oost J, White MF. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR–Cas adaptive immunity. FEMS Microbiol Rev. 2015;39(3):428–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2: e00471.

Article  PubMed  PubMed Central  Google Scholar 

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning. Science. 2023;379(6629): eadd8643.

Article  CAS  PubMed  Google Scholar 

Popp MW, Maquat LE. Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell. 2016;165(6):1319–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgens DW, Deans RM, Li A, Bassik MC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol. 2016;34(6):634–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kettleborough RNW, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013;496(7446):494–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32(1):97–108.

Article  CAS  PubMed  Google Scholar 

Uddin B, Chen N-P, Panic M, Schiebel E. Genome editing through large insertion leads to the skipping of targeted exon. BMC Genom. 2015;16:1082.

Article  Google Scholar 

Kapahnke M, Banning A, Tikkanen R. Random splicing of several exons caused by a single base change in the target exon of CRISPR/Cas9 mediated gene knockout. Cells. 2016;5(4):45.

Article  PubMed  PubMed Central  Google Scholar 

Makino S, Fukumura R, Gondo Y. Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles created by CRISPR–Cas9. Sci Rep. 2016;6:39608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prykhozhij SV, Steele SL, Razaghi B, Berman JN. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish. Dis Model Mech. 2017;10(6):811–22.

CAS  PubMed  PubMed Central  Google Scholar 

Lalonde S, Stone OA, Lessard S, Lavertu A, Desjardins J, Beaudoin M, et al. Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS ONE. 2017;12(6): e0178700.

Article  PubMed  PubMed Central  Google Scholar 

Mou H, Smith JL, Peng L, Yin H, Moore J, Zhang X-O, et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol. 2017;18(1):108.

Article  PubMed  PubMed Central  Google Scholar 

Anderson JL, Mulligan TS, Shen M-C, Wang H, Scahill CM, Tan FJ, et al. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS Genet. 2017;13(11): e1007105.

Article  PubMed  PubMed Central  Google Scholar 

Sui T, Song Y, Liu Z, Chen M, Deng J, Xu Y, et al. CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biol. 2018;19(1):164.

Article  PubMed  PubMed Central  Google Scholar 

Chen D, Tang J-X, Li B, Hou L, Wang X, Kang L. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol. 2018;18(1):60.

Article  PubMed  PubMed Central  Google Scholar 

Rodriguez-Rodriguez J-A, Lewis C, McKinley KL, Sikirzhytski V, Corona J, Maciejowski J, et al. Distinct roles of RZZ and Bub-KNL1 in mitotic checkpoint signaling and kinetochore expansion. Curr Biol. 2018;28(21):3422–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang J-X, Chen D, Deng S-L, Li J, Li Y, Fu Z, et al. CRISPR/Cas9-mediated genome editing induces gene knockdown by altering the pre-mRNA splicing in mice. BMC Biotechnol. 2018;18(1):61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang G, Kruse T, Guasch Boldú C, Garvanska DH, Coscia F, Mann M, et al. Efficient mitotic checkpoint signaling depends on integrated activities of Bub1 and the RZZ complex. EMBO J. 2019;38(7): e100977.

Article  PubMed  PubMed Central  Google Scholar 

Smits AH, Ziebell F, Joberty G, Zinn N, Mueller WF, Clauder-Münster S, et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods. 2019;16(11):1087–93.

Article  CAS  PubMed  Google Scholar 

Tuladhar R, Yeu Y, Piazza JT, Tan Z, Clemenceau JR, Wu X, et al. CRISPR–Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun. 2019;10(1):4056.

Article  PubMed  PubMed Central  Google Scholar 

Jiang M, Hu H, Kai J, Traw MB, Yang S, Zhang X. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Mol Biol. 2019;100(4–5):467–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borgo C, D’Amore C, Cesaro L, Itami K, Hirota T, Salvi M, et al. A N-terminally deleted form of the CK2α′ catalytic subunit is sufficient to support cell viability. Biochem Biophys Res Commun. 2020;531(3):409–15.

Article  CAS  PubMed  Google Scholar 

Borgo C, Cesaro L, Hirota T, Kuwata K, D’Amore C, Ruppert T, et al. Analysis of the phosphoproteome of CK2α(−/−)/Δα′ C2C12 myoblasts compared to the wild-type cells. Open Biol. 2023;13(2): 220220.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosur V, Low BE, Li D, Stafford GA, Kohar V, Shultz LD, et al. Genes adapt to outsmart gene-targeting strategies in mutant mouse strains by skipping exons to reinitiate transcription and translation. Genome Biol. 2020;21(1):168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Fu Y, Thakur C, Bi Z, Wadgaonkar P, Qiu Y, et al. CRISPR–Cas9 gene editing causes alternative splicing of the targeting mRNA. Biochem Biophys Res Commun. 2020;528(1):54–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kishimoto Y, Nishiura I, Hirata W, Yuri S, Yamamoto N, Ikawa M, et al. A novel tissue specific alternative splicing variant mitigates phenotypes in Ets2 frame-shift mutant models. Sci Rep. 2021;11(1):8297.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsang MJ, Cheeseman IM. Alternative CDC20 translational isoforms tune mitotic arrest duration. Nature. 2023;617(7959):154–61.

Article  CAS  PubMed  Google Scholar 

Bagheri A, Culp PA, DuBridge RB, Chen T-HT. CRISPR/Cas9 disruption of EpCAM Exon 2 results in cell-surface expression of a truncated protein targeted by an EpCAM specific T cell engager. Biochem Biophys Rep. 2022;29: 101205.

CAS  PubMed  PubMed Central  Google Scholar 

Jia Y, Qin C, Traw MB, Chen X, He Y, Kai J, et al. In rice splice variants that restore the reading frame after frameshifting indel introduction are common, often induced by the indels and sometimes lead to oranism-level rescue. PLoS Genet. 2022;18(2): e1010071.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Ma J, Jin X, Zhang L, Zhang M, Li PZ, et al. Human IFNAR2 mutant generated by CRISPR/Cas9-induced exon skipping upregulates a subset of tonic-like interferon-stimulated genes upon IFNβ stimulation. J Interferon Cytokine Res. 2022;42(11):580–9.

Article  CAS  PubMed  Google Scholar 

Vallverdú-Prats M, Brugada R, Alcalde M. Premature termination codon in 5′ region of desmoplakin and plakoglobin genes may escape nonsense-mediated decay through the reinitiation of translation. Int J Mol Sci. 2022;23(2):656.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif