Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective

Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, Henrikson HJ, Lu D, Pennini A, Xu R, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022;8:420–44.

Article  PubMed  Google Scholar 

Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22:3855–64.

PubMed  Google Scholar 

Olivares-Urbano MA, Grinan-Lison C, Marchal JA, Nunez MI. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 2020;9:1651.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer. 2020;19:58.

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 2020;19:47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash H, Hakimi A, Amirhossein Z, Daneshi S, Samarghandian S, Baradaran B, Najafi M. MicroRNA-mediated autophagy regulation in cancer therapy: the role in chemoresistance/chemosensitivity. Eur J Pharmacol. 2021;892: 173660.

Article  CAS  PubMed  Google Scholar 

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

Article  PubMed  PubMed Central  Google Scholar 

Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73:3852–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

Article  CAS  PubMed  Google Scholar 

Haddad G, Lorenzen JM. Biogenesis and function of circular RNAs in health and in disease. Front Pharmacol. 2019;10:428.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Long F, Lin H, Wang X, Jiang G, Wang T. Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases. Pharmacol Res. 2021;174: 105936.

Article  CAS  PubMed  Google Scholar 

Zhou Z, Zhang Y, Gao J, Hao X, Shan C, Li J, Liu C, Wang Y, Li P. Circular RNAs act as regulators of autophagy in cancer. Mol Ther Oncolytics. 2021;21:242–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–37.

Article  CAS  PubMed  Google Scholar 

Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, et al. The emerging roles of autophagy-related microRNAs in cancer. Int J Biol Sci. 2021;17:134–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Autophagy and multidrug resistance in cancer. Chin J Cancer. 2017;36:52.

Article  PubMed  PubMed Central  Google Scholar 

Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19:12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang L, Lv J, Xuan Z, Li B, Li Z, He Z, Li F, Xu J, Wang S, Xia Y, et al. Circular CPM promotes chemoresistance of gastric cancer via activating PRKAA2-mediated autophagy. Clin Transl Med. 2022;12: e708.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Y, Liu JB, Li JM, Zhang C, Lu CX, Wen ZJ. Silence of circBANP increases radiosensitivity of colorectal cancer cells and inhibits growth of subcutaneous xenografts by up-regulating miR-338-3p expression. Zhonghua Zhong Liu Za Zhi. 2021;43:533–40.

CAS  PubMed  Google Scholar 

Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, et al. CircMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood. 2019;134:1533–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

Article  CAS  PubMed  Google Scholar 

Yang Y, Fan XJ, Mao MW, Song XW, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

Article  PubMed  Google Scholar 

Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24:357–70.

Article  CAS  PubMed  Google Scholar 

Wu X, Wu J, Wang L, Yang W, Wang B, Yang H. CircRNAs in malignant tumor radiation: the new frontier as radiotherapy biomarkers. Front Oncol. 2022;12: 854678.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 2021;19:910–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19:349–64.

Article  CAS  PubMed  Google Scholar 

Antonioli M, Di Rienzo M, Piacentini M, Fimia GM. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci. 2017;42:28–41.

Article  CAS  PubMed  Google Scholar 

Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T. Architecture of human mTOR complex 1. Science. 2016;351:48–52.

Article  CAS  PubMed  Google Scholar 

Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11:895–904.

Article  CAS  PubMed  Google Scholar 

Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284:12297–305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reidick C, El Magraoui F, Meyer HE, Stenmark H, Platta HW. Regulation of the tumor-suppressor function of the class III phosphatidylinositol 3-kinase complex by ubiquitin and SUMO. Cancers (Basel). 2014;7:1–29.

Article  PubMed 

留言 (0)

沒有登入
gif