Nanobiotic Formulations utilizing Quinoline-based-Triazole functionalized Carbon Quantum Dots via Click Chemistry for Combatting Clinical-Resistant Bacterial Pathogens

de Breij A, Riool M, Cordfunke RA et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044

Article  PubMed  Google Scholar 

Yao J, Zou P, Cui Y et al (2023) Recent advances in strategies to combat bacterial drug resistance: antimicrobial materials and drug delivery systems. Pharmaceutics 15:1188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harikumar G, Krishanan K (2022) The growing menace of drug resistant pathogens and recent strategies to overcome drug resistance: a review. J King Saud Univ sci 34:101979

Article  Google Scholar 

Yadav N, Mudgal D, Mishra S et al (2023) Development of ionic liquid-capped carbon dots derived from Tecoma stans (L.) Juss. ex Kunth: combatting bacterial pathogens in diabetic foot ulcer pus swabs, targeting both standard and multi-drug resistant strains. S Afr J Bot 163:412–426

Article  CAS  Google Scholar 

Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB et al (2023) Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Braz J Biol 84:264946

Article  Google Scholar 

Bennour I, Ramos MN, Nuez-Martínez M et al (2022) Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalt Trans 51:7188–7209

Article  CAS  Google Scholar 

Ngo HL, Mishra DK, Mishra V, Truong CC (2021) Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem Eng Sci 229:116142

Article  Google Scholar 

Gupta SS, Mishra V, Das MM et al (2021) Amino acid derived biopolymers: recent advances and biomedical applications. Int J Biol Macromol 188:542–567

Article  CAS  PubMed  Google Scholar 

Zhang C, Yang M (2022) Antimicrobial peptides: from design to clinical application. Antibiotics 11:349

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mei JA, Johnson W, Kinn B et al (2022) Antimicrobial activity of a triple antibiotic combination toward ocular Pseudomonas aeruginosa clinical isolates. Transl Vis Sci Technol 11:26

Article  PubMed  PubMed Central  Google Scholar 

Xie M, Chen K, Chan EW-C, Chen S (2022) Synergistic antimicrobial effect of colistin in combination with econazole against multidrug-resistant acinetobacter baumannii and its persisters. Microbiol Spectr 10:e00937-e1022

Article  PubMed  PubMed Central  Google Scholar 

Mukherjee D, Zou H, Liu S et al (2016) Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol 11:643–650

Article  CAS  PubMed  Google Scholar 

Batalha IL, Bernut A, Schiebler M et al (2019) Polymeric nanobiotics as a novel treatment for mycobacterial infections. J Control Release 314:116–124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vestergaard M, Paulander W, Marvig RL et al (2016) Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa. Int J Antimicrob Agents 47:48–55

Article  CAS  PubMed  Google Scholar 

Liu J, Shu Y, Zhu F et al (2021) Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: a systematic review and network. J Glob Antimicrob Resist 24:136–147

Article  CAS  PubMed  Google Scholar 

Ardebili A, Izanloo A, Rastegar M (2023) Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 21:387–429

Article  CAS  PubMed  Google Scholar 

Abdallah EM, Alhatlani BY, de Paula MR, Martins CHG (2023) Back to nature: medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants 12:3077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Deng B, Chen G et al (2016) Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res 9:963–973

Article  CAS  Google Scholar 

Dey D, Chowdhury S, Sen R (2023) Insight into recent advances on nanotechnology-mediated removal of antibiotic resistant bacteria and genes. J Water Process Eng 52:103535

Article  Google Scholar 

Brar B, Marwaha S, Poonia AK et al (2023) Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 205:62

Article  CAS  PubMed  Google Scholar 

Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

Article  CAS  PubMed  Google Scholar 

Yadav N, Gaikwad RP, Mishra V, Gawande MB (2022) Synthesis and photocatalytic applications of functionalized carbon quantum dots. Bull Chem Soc Jpn 95:1638–1679

Article  CAS  Google Scholar 

Yadav N, Mudgal D, Mishra V (2023) In-situ synthesis of ionic liquid-based-carbon quantum dots as fluorescence probe for hemoglobin detection. Anal Chim Acta 1272:341502

Article  CAS  PubMed  Google Scholar 

Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

Article  CAS  Google Scholar 

Thakur M, Pandey S, Mewada A et al (2014) Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Deliv. https://doi.org/10.1155/2014/282193

Article  PubMed  PubMed Central  Google Scholar 

Seth S, Rathinasabapathi P, Selvarajan E et al (2023) Quantum dots as antibacterial agents. Carbon and graphene quantum dots for biomedical applications. Elsevier, pp 119–128

Chapter  Google Scholar 

Mishra S, Das K, Chatterjee S et al (2023) Facile and green synthesis of novel fluorescent carbon quantum dots and their silver heterostructure: an in vitro anticancer activity and imaging on colorectal carcinoma. ACS Omega 8:4566–4577

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Yadav AK, Gupta D, Mishra V (2023) Recent advancements in triazole-based click chemistry in cancer drug discovery and development. SynOpen 7:186–208

Article  CAS  Google Scholar 

Li X, Xiong Y (2022) Application of “Click” chemistry in biomedical hydrogels. ACS Omega 7:36918–36928. https://doi.org/10.1021/acsomega.2c03931

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee S, Kumar N, Sehrawat H et al (2021) Click triazole as a linker for drug repurposing against SARs-CoV-2: a greener approach in race to find COVID-19 therapeutic. Curr Res Green Sustain Chem 4:100064

Article  CAS  Google Scholar 

Mishra V, Kumar R (2019) Cyclic polymer of N-vinylpyrrolidone via atrp protocol: kinetic study and concentration effect of polymer on click chemistry in solution. Polym Sci Ser B 61:753–761

Article  Google Scholar 

Yadav N, Mudgal D, Anand R et al (2022) Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int J Biol Macromol 220:537–572

Article  CAS  PubMed  Google Scholar 

Mudgal D, Singh RP, Yadav N et al (2023) Exploring the catalytic efficiency of copper-doped magnetic carbon aerogel towards the coupling reaction of isatin oxime with phenylboronic acid derivatives. SynOpen 7:570–579

Article  CAS  Google Scholar 

Mishra V, Jung S-H, Park JM et al (2013) Triazole-containing hydrogels for time-dependent sustained drug release. Macromol Rapid Commun 35:442–446

Article  PubMed  Google Scholar 

Mishra V, Jung S-H, Jeong HM, Lee H (2014) Thermoresponsive ureido-derivatized polymers: the effect of quaternization on UCST properties. Polym Chem 5:2411–2416

Article  CAS  Google Scholar 

Salma U, Ahmad S, Alam MZ, Khan SA (2023) A review: synthetic approaches and biological applications of triazole derivatives. J Mol Struct. https://doi.org/10.1016/j.molstruc.2023.137240

Article  Google Scholar 

Insuasty D, Vidal O, Bernal A et al (2019) Antimicrobial activity of quinoline-based hydroxyimidazolium hybrids. Antibiotics 8:239

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nehra N, Tittal RK, Ghule VD (2021) 1, 2, 3-triazoles of 8-hydroxyquinoline and hbt: synthesis and studies (DNA binding, antimicrobial, molecular docking, ADME, and DFT). ACS Omega 6:27089–27100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel KB, Kumari P (2022) A review: structure-activity relationship and antibacterial activities of quinoline based hybrids. J Mol Struct 1268:133634

Article  CAS

留言 (0)

沒有登入
gif