Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions

Ain Q, Mushtaq W, Shadab M, Siddiqui MB (2023) Allelopathy: an alternative tool for sustainable agriculture. Physiol Mol Biol Plants 29(74):495–511

Article  PubMed  PubMed Central  Google Scholar 

Anjum T, Bajwa R (2010) Isolation of bioactive allelochemicals from sunflower (variety Suncross-42) through fractionation-guided bioassays. Nat Prod Res 24:1783–1788

Article  CAS  PubMed  Google Scholar 

Asaduzzaman M, Asao T (2012) Autotoxicity in beans and their allelochemicals. Sci Hort 134:26–31

Article  CAS  Google Scholar 

Aslam F, Khaliq A, Matloob A, Tanveer A, Hussain S, Zahir ZA (2017) Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecol 27:1–24

Article  CAS  Google Scholar 

Azizi M, Fuji Y (2006) Allelopathic effect of some medicinal plant substances on seed germination of Amaranthus retroflexus and Portulaca oleraceae. Acta Hortic 699:61–68. https://doi.org/10.17660/actahortic.2006.699.5

Article  Google Scholar 

Bachheti A, Sharma A, Bachheti RK, Husen A, Pandey DP (2020) Plant allelochemicals and their various applications. Co-evolution of secondary metabolites. Springer, Berlin, pp 441–465

Chapter  Google Scholar 

Bektić S, Huseinović S, Husanović J, Memić S (2021) Allelopathic effects of extract Robinia pseudoacacia L. and Chenopodium album L. on germination of tomato (Solanum lycopersicum L.). Curr J App SciTech 40(26):11–18

Article  Google Scholar 

Berestetskiy A (2023) Modern approaches for the development of new herbicides based on natural compounds. Plants 12(2):234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertin C, Weston LA, Kaur H (2008) Allelopathic crop development: molecular and traditional plant breeding approaches. In: Janick J (ed) Plant breeding reviews. John Wiley and Sons Inc., Hoboken, pp 231–258

Google Scholar 

Bishop B, Meier NA, Coggeshall MV, Lovell ST, Revord RS (2023) A review to frame the utilization of Eastern black walnut (Juglans nigra L.) cultivars in alley cropping systems. Agrofor Syst 98:309–321

Google Scholar 

Bohm P, Zanardo F, Ferrarese M, Ferrarese-Filho O (2006) Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biol Plantarum 50(2):315–317. https://doi.org/10.1007/s10535-006-0029-x

Article  CAS  Google Scholar 

Carvalho TF, Carvalho AC, Zanuncio JC, de Oliveira MLR, Machado ELM, José AC, Santos JB, Pereira IM (2022) Does invasion by Pteridium aquilinum (Dennstaedtiaceae) affect the ecological succession in Atlantic Forest areas after a fire? Environ Sci Pollu Res 29:14195–14205

Article  Google Scholar 

Cheng F, Cheng ZH, Meng HW (2016) Transcriptomic insights into the allelopathic effects of the garlic allelochemical diallyl disulfide on tomato roots. Sci Rep 6:38902. https://doi.org/10.1038/srep38902

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chou CH, Wang CM (2023) Allelopathy research: past, present and future I. Allelopathy in natural ecosystems. Allelo J 58(1):1–22

Article  Google Scholar 

Choudhary CS, Behera B, Raza MB, Mrunalini K, Bhoi TK, Lal MK, Nongmaithem D, Pradhan S, Song B, Das TK (2023) Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere 25(11):100667

Article  Google Scholar 

Colegate SM, Gardner DR, Joy RJ, Betz JM, Panter KE (2012) Dehydropyrrolizidine alkaloids, including monoesters with an unusual esterifying acid, from cultivated Crotalaria juncea (sunn hemp cv. “tropic sun”). J Agri Food Chem 60:3541–3550

Article  CAS  Google Scholar 

de Albuquerque MB, dos Santos RC, Lima LM, Melo Filho PD, Nogueira RJ, Da Câmara CA, de Rezende RA (2011) Allelopathy, an alternative tool to improve cropping systems. A review. Agron Sust Develop 31(2):379–395

Article  Google Scholar 

Dong Y, Fu W (2023) Effects of phenolic allelochemicals on plant photosynthesis and chlorophyll fluorescence. World Sci Res J 9(8):113–119

Google Scholar 

Duke SO, Scheffler BE, Dayan FE, Weston LA, Ota E (2001) Strategies for using transgenes to produce allelopathic crops. Weed Technol 15:826–834. https://doi.org/10.1614/0890-037x

Article  CAS  Google Scholar 

Ercoli L, Masoni A, Pampana S, Arduini I (2007) Allelopathic effects of rye, brown mustard and hairy vetch on redroot pigweed, common lambs quarter and knotweed. Allelo J 19(1):249

Google Scholar 

Fang C, Yang L, Chen W, Li L, Zhang P, Li Y, He H, Lin W (2020) MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. J Exp Bot 71:2127–2141. https://doi.org/10.1093/jxb/erz540

Article  CAS  PubMed  Google Scholar 

Gealy DR, Yan W (2012) Weed suppression potential of ‘rondo’ and other indica rice germplasm lines. Weed Technol 26:517–524. https://doi.org/10.1614/wt-d-11-00141.1

Article  Google Scholar 

Han M, Yang H, Huang H, Du J, Zhang S, Fu Y (2024) Allelopathy and allelobiosis: efficient and economical alternatives in agroecosystems. Plant Biol 26(1):11–27

Article  CAS  PubMed  Google Scholar 

Heisey R (1996) Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am J Bot 83(2):192–200. https://doi.org/10.1002/j.1537-2197.1996.tb12697.x

Article  Google Scholar 

Hejl AM, Koster KL (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J Chem Ecol 30(2):453–471

Article  CAS  PubMed  Google Scholar 

Hickman DT, Rasmussen A, Ritz K, Birkett MA, Neve P (2021) Allelochemicals as multi-kingdom plant defence compounds: towards an integrated approach. Pest Manag Sci 77:1121–1131. https://doi.org/10.1002/ps.6076

Article  CAS  PubMed  Google Scholar 

Inderjit (2001) Soils: environmental effect on allelochemical activity. Agron J 93:79–84. https://doi.org/10.2134/agronj2001.93179x

Article  CAS  Google Scholar 

Inderjit, Weston LA, Duke SO (2005) Challenges, achievements and opportunities in allelopathy research. J Plant Int 1(2):69–81

CAS  Google Scholar 

Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65

Article  Google Scholar 

Jensen LB, Courtois B, Shen L, Li Z, Olofsdotter M, Mauleon RP (2001) Locating genes controlling allelopathic effects against Barnyard grass in upland rice. Agron J 93:21–26. https://doi.org/10.2134/agronj2001.93121x

Article  CAS  Google Scholar 

Jose S, Holzmueller E (2008) Black walnut allelopathy: implications for intercropping. Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 303–319

Chapter  Google Scholar 

Kato-Noguchi H (2022) Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants 11(19):2551. https://doi.org/10.3390/plants11192551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato-Noguchi H, Fushimi Y, Shigemori H (2009) An allelopathic substance in red pine needles (Pinus densiflora). J Plant Physiol 166(4):442–446

Article  CAS  PubMed  Google Scholar 

Kikraliya DL, Yadav VL, Bijarnia KK, Kumar A (2023) Different type of allelopathy and its management. Integrated Publications TM, New Delhi, p 251

Google Scholar 

Kostina-Bednarz M, Płonka J, Barchanska H (2023) Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Rev Environ Sci Bio/technol 22:471–504

Article  CAS  Google Scholar 

Krogh SS, Mensz SJ, Nielsen ST, Mortensen AG, Christophersen C, Fomsgaard IS (2006) Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. J Agri Food Chem 54(4):1064–1074

Article  CAS  Google Scholar 

Kumar A, Dwivedi GK, Tewari S, Paul J, Anand R, Kumar N, Kumar P, Singh H, Kaushal R (2020a) Carbon mineralization and inorganic nitrogen pools under Terminalia chebula Retz.-based agroforestry system in Himalayan foothills India. For Sci 66(5):634–643

Google Scholar 

Kumar A, Dwivedi GK, Tewari S, Paul J, Sah VK, Singh H, Kumar P, Kumar N, Kaushal R (2020b) Soil organic carbon pools under Terminalia chebula Retz. based agroforestry system in Himalayan foothills India. Curr Sci 118(7):1098–1103

Article  CAS  Google Scholar 

Kumar A, Kumar P, Singh H, Bisht S, Kumar N (2021a) Relationship of physiological plant functional traits with soil carbon stock in temperate forest of Garhwal Himalaya. Curr Sci 120(8):1368–1373

Article  CAS  Google Scholar 

Kumar A, Kumar P, Singh H, Kumar N (2021b) Modulation of plant functional traits under essential plant nutrients during seasonal regime in natural forests of Garhwal Himalayas. Plant Soil 465:197–212

Article  CAS  Google Scholar 

Kumar A, Singh H, Kumari G, Bisht S, Malik A, Kumar N, Singh M, Raturi A, Barthwal S, Thakur A, Kaushal R (2022) Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations. Environ Pollut 313:120191

Article  CAS  PubMed  Google Scholar 

Kumar N, Jeena N, Kumar A, Khwairakpam R, Singh H (2021c) Comparative response of rice cultivars to elevated air temperature in Bhabar region of Indian Himalaya: status on yield attributes. Heliyon 7(7):e07474

Article  PubMed  PubMed Central  Google Scholar 

Kumar N, Jeena N, Singh H (2019) Elevated temperature modulates rice pollen structure: a study from foothill Himalayan Agro-ecosystem in India. 3Biotech 9:175. https://doi.org/10.1007/s13205-019-1700-1

Article  Google Scholar 

留言 (0)

沒有登入
gif