Opportunities and challenges in design and optimization of protein function

Arnold, F. H. Innovation by evolution: bringing new chemistry to life (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 58, 14420–14426 (2019).

Article  CAS  PubMed  Google Scholar 

Winter, G. Harnessing evolution to make medicines (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 58, 14438–14445 (2019).

Article  CAS  PubMed  Google Scholar 

Trudeau, D. L. & Tawfik, D. S. Protein engineers turned evolutionists-the quest for the optimal starting point. Curr. Opin. Biotechnol. 60, 46–52 (2019).

Article  CAS  PubMed  Google Scholar 

Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

Article  CAS  PubMed  Google Scholar 

Arnold, F. H. The nature of chemical innovation: new enzymes by evolution. Q. Rev. Biophys. 48, 404–410 (2015).

Article  CAS  PubMed  Google Scholar 

Arnold, F. H. Combinatorial and computational challenges for biocatalyst design. Nature 409, 253–257 (2001).

Article  CAS  PubMed  Google Scholar 

Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257 (2012).

Article  PubMed  Google Scholar 

Goldsmith, M. et al. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng. Des. Sel. 30, 333–345 (2017).

Article  CAS  PubMed  Google Scholar 

Fleishman, S. J. & Baker, D. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 149, 262–273 (2012).

Article  CAS  PubMed  Google Scholar 

Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. 22, 74–82 (2013).

Article  CAS  PubMed  Google Scholar 

Baker, D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci. 28, 678–683 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khare, S. D. & Fleishman, S. J. Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Lett. 587, 1147–1154 (2013).

Article  CAS  PubMed  Google Scholar 

Baker, D. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 19, 1817–1819 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek, M. & Baker, D. Deep learning and protein structure modeling. Nat. Methods 19, 13–14 (2022).

Article  CAS  PubMed  Google Scholar 

Pan, X. & Kortemme, T. Recent advances in de novo protein design: principles, methods, and applications. J. Biol. Chem. 296, 100558 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).

Article  CAS  PubMed  Google Scholar 

Kortemme, T. De novo protein design — from new structures to programmable functions. Cell 187, 526–544 (2024).

Article  CAS  PubMed  Google Scholar 

Yue, K. & Dill, K. A. Inverse protein folding problem: designing polymer sequences. Proc. Natl Acad. Sci. USA 89, 4163–4167 (1992).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowie, J. U., Lüthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

Article  CAS  PubMed  Google Scholar 

Weinstein, J., Khersonsky, O. & Fleishman, S. J. Practically useful protein-design methods combining phylogenetic and atomistic calculations. Curr. Opin. Struct. Biol. 63, 58–64 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

Article  CAS  PubMed  Google Scholar 

Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023). Applying diffusion models to backbone generation yields large de novo-designed proteins and assemblies. Available as a Colab notebook.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

Article  CAS  PubMed  Google Scholar 

Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550, 74–79 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature 605, 551–560 (2022). Repertoires of miniprotein binders for 12 different antigens are designed based solely on the structure of the target antigen site.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

Article  CAS  PubMed  Google Scholar 

Zhao, H. & Arnold, F. H. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53 (1999).

Article  CAS  PubMed  Google Scholar 

Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

Article  CAS  PubMed  Google Scholar 

Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

Article  Google Scholar 

Dill, K. A. Polymer principles and protein folding. Protein Sci. 8, 1166–1180 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brocchieri, L. & Karlin, S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33, 3390–3400 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johansson, K. E. et al. Computational redesign of thioredoxin is hypersensitive toward minor conformational changes in the backbone template. J. Mol. Biol. 428, 4361–4377 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherny, I. et al. Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries. ACS Chem. Biol. 8, 2394–2403 (2013).

Article  CAS  PubMed  Google Scholar 

Baran, D. et al. Principles for computational design of binding antibodies. Proc. Natl Acad. Sci. USA 114, 10900–10905 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, P. M., Bolduc, J. M., Gallaher, J. L., Stoddard, B. L. & Baker, D. Alteration of enzyme specificity by computational loop remodeling and design. Proc. Natl Acad. Sci. USA 106, 9215–9220 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleishman, S. J. et al. Computational design of proteins targeting the conserved stem region of in

留言 (0)

沒有登入
gif