TrkB-mediated neuroprotection in female hippocampal neurons is autonomous, estrogen receptor alpha-dependent, and eliminated by testosterone: a proposed model for sex differences in neonatal hippocampal neuronal injury

Fatemi A, Wilson MA, Johnston MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36(4):835–58.

Article  PubMed  PubMed Central  Google Scholar 

Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. Int J Dev Neurosci. 2009;27(8):863–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill CA, Fitch RH. Sex differences in mechanisms and outcome of neonatal hypoxia-ischemia in rodent models: implications for sex-specific neuroprotection in clinical neonatal practice. Neurol Res Int. 2012;2012(doi):1–9.

Article  Google Scholar 

Lauterbach MD, Raz S, Sander CJ. Neonatal hypoxic risk in preterm birth infants: the influence of sex and severity of respiratory distress on cognitive recovery. Neuropsychology. 2001;15(3):411–20.

Article  CAS  PubMed  Google Scholar 

Tioseco JA, Aly H, Essers J, Patel K, El-Mohandes AA. Male sex and intraventricular hemorrhage. Pediatr Crit Care Med. 2006;7(1):40–4.

Article  PubMed  Google Scholar 

Donders J, Hoffman NM. Gender differences in learning and memory after pediatric traumatic brain injury. Neuropsychology. 2002;16(4):491–9.

Article  PubMed  Google Scholar 

Cikla U, Chanana V, Kintner DB, Udho E, Eickhoff J, Sun W et al. ERalpha Signaling is required for TrkB-Mediated hippocampal neuroprotection in female neonatal mice after hypoxic ischemic encephalopathy(1,2,3). eNeuro. 2016;3(1).

Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D, et al. TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS Neurol Disord Drug Targets. 2013;12(3):360–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A. 2010;107(6):2687–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM. Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol. 1997;41(4):521–9.

Article  CAS  PubMed  Google Scholar 

Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM. BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol. 2000;166(1):99–114.

Article  CAS  PubMed  Google Scholar 

Thoenen H, Sendtner M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci. 2002;5:1046–50.

Article  CAS  PubMed  Google Scholar 

Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Investig. 2010;120(5):1774–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Qi Q, Xiao G, Li J, Luo HR, Ye K. O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity. Pharmacology. 2013;91(3–4):185–200.

Article  CAS  PubMed  Google Scholar 

Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, et al. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J Biol Chem. 2014;289(40):27571–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solum DT, Handa RJ. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci. 2002;22(7):2650–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16(1):17–29.

Article  CAS  PubMed  Google Scholar 

Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.

Article  CAS  PubMed  Google Scholar 

Yang LC, Zhang QG, Zhou CF, Yang F, Zhang YD, Wang RM, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS ONE. 2010;5(5):e9851.

Article  PubMed  PubMed Central  Google Scholar 

Tabatadze N, Huang G, May RM, Jain A, Woolley CS. Sex differences in Molecular Signaling at Inhibitory synapses in the Hippocampus. J Neuroscience: Official J Soc Neurosci. 2015;35(32):11252–65.

Article  CAS  Google Scholar 

Zhang QG, Raz L, Wang R, Han D, De Sevilla L, Yang F, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neuroscience: Official J Soc Neurosci. 2009;29(44):13823–36.

Article  CAS  Google Scholar 

Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, et al. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology. 2006;147(6):3076–84.

Article  CAS  PubMed  Google Scholar 

Westberry JM, Prewitt AK, Wilson ME. Epigenetic regulation of the estrogen receptor alpha promoter in the cerebral cortex following ischemia in male and female rats. Neuroscience. 2008;152(4):982–9.

Article  CAS  PubMed  Google Scholar 

Elzer JG, Muhammad S, Wintermantel TM, Regnier-Vigouroux A, Ludwig J, Schutz G, et al. Neuronal estrogen receptor-alpha mediates neuroprotection by 17beta-estradiol. J Cereb Blood flow Metabolism: Official J Int Soc Cereb Blood Flow Metabolism. 2010;30(5):935–42.

Article  CAS  Google Scholar 

Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, et al. Neuroprotective mechanism of Icariin on hypoxic ischemic brain damage in neonatal mice. Oxid Med Cell Longev. 2022;2022:1330928.

Article  PubMed  PubMed Central  Google Scholar 

Gerstner B, Sifringer M, Dzietko M, Schuller A, Lee J, Simons S, et al. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol. 2007;61(6):562–73.

Article  CAS  PubMed  Google Scholar 

McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91–124. https://doi.org/10.1152/physrev.00010.2007.

Article  CAS  PubMed  Google Scholar 

Clarkson J, Herbison AE. Hypothalamic control of the male neonatal testosterone surge. Philos Trans R Soc Lond B Biol Sci. 2016;371(1688):20150115.

Article  PubMed  PubMed Central  Google Scholar 

Hill CA, Threlkeld SW, Fitch RH. Early testosterone modulated sex differences in behavioral outcome following neonatal hypoxia ischemia in rats. Int J Dev Neurosci. 2011;29(4):381–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knickmeyer RC, Baron-Cohen S. Fetal testosterone and sex differences in typical social development and in autism. J Child Neurol. 2006;21(10):825–45.

Article  PubMed  Google Scholar 

Heyer A, Hasselblatt M, von Ahsen N, Hafner H, Siren AL, Ehrenreich H. In vitro gender differences in neuronal survival on hypoxia and in 17beta-estradiol-mediated neuroprotection. J Cereb Blood Flow Metab. 2005;25(4):427–30.

Article  CAS  PubMed  Google Scholar 

Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental models for testing the efficacy of pharmacological treatments for neonatal hypoxic-ischemic Encephalopathy. Biomedicines. 2022;10(5).

Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 2010;6(4):e1000898. https://doi.org/10.1371/journal.pgen.

Article  PubMed  PubMed Central  Google Scholar 

Beaudoin GM 3rd, Lee SH, Singh D, Yuan Y, Ng YG, Reichardt LF, et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc. 2012;7(9):1741–54.

Article  CAS  PubMed  Google Scholar 

Berthois Y, Katzenellenbogen JA, Katzenellenbogen B. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA. 1986;83:2496–500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu W, Yuen EY, Yan Z. The stress hormone corticosterone increases synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem. 2010;285(9):6101–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwieger J, Esser KH, Lenarz T, Scheper V. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: effects of AraC on cell composition and neurons. J Neurosci Methods. 2016;268:106–16.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif