A novel Posaconazole oral formulation using spray dried solid dispersion technology: in-vitro and in-vivo study

Nagappan V, Deresinski S. Posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis. 2007;45:1610–7.

Article  CAS  PubMed  Google Scholar 

Posaconazole drug-bank. https://go.drugbank.com/drugs/DB01263.

Krishna G, Moton A, Lei M, et al. Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother. 2009;53:958–66.

Article  CAS  PubMed  Google Scholar 

Gutsche S, Krause M, Kranz H. Strategies to overcome pH-dependent solubility of weakly basic drugs by using different types of alginates. Drug Dev Ind Pharm. 2008;34:1277–84.

Article  CAS  PubMed  Google Scholar 

Hens B, Brouwers J, Corsetti M, et al. Supersaturation and precipitation of Posaconazole upon entry in the upper small intestine in humans. J Pharm Sci. 2016;105:2677–2684. Available from: https://doi.org/10.1002/jps.24690.

Kambayashi A, Dressman JB. Predicting the changes in oral absorption of weak base drugs under elevated gastric pH using an in vitro–in silico–in vivo approach: case examples—dipyridamole, prasugrel, and nelfinavir. J Pharm Sci. 2019;108:584–91.

Article  CAS  PubMed  Google Scholar 

Li J, Bukhtiyarov Y, Spivey N, et al. in vitro and in vivo assessment of the potential of supersaturation to enhance the absorption of poorly soluble basic drugs. J Pharm Innov. 2020;15:591–602.

Article  Google Scholar 

Press D. Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections. 2016;1–8.

Nagarwal RC, Ridhurkar DN, Pandit JK. in vitro release kinetics and bioavailability of gastroretentive cinnarizine hydrochloride tablet. AAPS PharmSciTech. 2010;11:294–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah S, Pandya S, Waghulade M. Development and investigation of gastro retentive dosage form of weakly basic drug. Asia J Pharm. 2010;4:11–6.

Article  CAS  Google Scholar 

Kim JY, Rhee YS, Park CW, et al. Preparation and evaluation of dual-mode floating gastroretentive tablets containing itraconazole. Drug Deliv. 2014;21:519–29.

Article  CAS  PubMed  Google Scholar 

Madgulkar A, Kadam S, Pokharkar V. Studies on formulation development of mucoadhesive sustained release itraconazole tablet using response surface methodology. 2008;9:998–1005.

CAS  Google Scholar 

Rathi J, Bhowmick M, Sharma R, et al. Development and in vitro characterization of floating drug delivery system of ketoconazole. J Drug Deliv Ther. 2019;9:22–9.

Article  CAS  Google Scholar 

Beneš M, Pekárek T, Beránek J, et al. Methods for the preparation of amorphous solid dispersions – a comparative study. J Drug Deliv Sci Technol. 2017;38:125–134. Available from: https://doi.org/10.1016/j.jddst.2017.02.005.

Patel K, Shah S, Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: a comprehensive review. DARU, J Pharm Sci. 2022;30:165–89.

Article  Google Scholar 

Chen Y, Shi Q, Chen Z, et al. Preparation and characterization of emulsified solid dispersions containing docetaxel. Arch Pharmacal Res. 2011;34:1909–17.

Article  CAS  Google Scholar 

De Mohac LM, Caruana R, Pavia FC, et al. Multicomponent solid dispersion as a formulation strategy to improve drug permeation: a case study on the anti-colorectal cancer irinotecan. J Drug Deliv Sci Technol. 2019;52:346–54.

Article  Google Scholar 

Ke P, Qi S, Sadowski G, et al. Solid dispersion - a pragmatic method to improve the bioavailability of poorly soluble drugs. Computational pharmaceutics: application of molecular modeling in drug delivery. 2015;81–100.

Pandi P, Bulusu R, Kommineni N, et al. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 2020;586:119560. Available from: https://doi.org/10.1016/j.ijpharm.2020.119560.

He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104:3237–3258. Available from: https://doi.org/10.1002/jps.24541.

Sahoo A, Kumar NSK, Suryanarayanan R. Crosslinking: an avenue to develop stable amorphous solid dispersion with high drug loading and tailored physical stability. J Control Release. 2019;311–312:212–224. Available from: https://doi.org/10.1016/j.jconrel.2019.09.007.

Bhujbal SV, Mitra B, Jain U, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharmaceutica Sinica B. 2021;11:2505–2536. Available from: https://doi.org/10.1016/j.apsb.2021.05.014.

Slámová M, Školáková T, Školáková A, et al. Preparation of solid dispersions with respect to the dissolution rate of active substance. J Drug Deliv Sci Technol. 2020;56:101518. Available from: https://doi.org/10.1016/j.jddst.2020.101518.

Tran P, Pyo YC, Kim DH, et al. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11:1–26.

Article  Google Scholar 

Vasconcelos T, Marques S, das Neves J, et al. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85–101.

Li Y, Mann AKP, Zhang D, et al. Processing impact on in vitro and in vivo performance of solid dispersions—a comparison between hot-melt extrusion and spray drying. Pharmaceutics. 2021;13.

Mustafa WW, Fletcher J, Khoder M, et al. Solid dispersions of gefitinib prepared by spray drying with improved mucoadhesive and drug dissolution properties. AAPS PharmSciTech. 2022;23.

Patel BB, Patel JK, Chakraborty S, et al. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. 2015;23:352–365. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319016413001242.

Poudel S, Kim DW. Developing ph-modulated spray dried amorphous solid dispersion of candesartan cilexetil with enhanced in vitro and in vivo performance. Pharmaceutics. 2021;13.

Singh A, Mooter GVD. Spray drying formulation of amorphous solid dispersions. 2015.

Nair AR, Lakshman YD, Anand VSK, et al. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 2020;21.

Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10:359–369. Available from: https://doi.org/10.34172/apb.2020.044.

Lan Y, Smithey D, Fennewald J, et al. Evaluation of the polymer Soluplus® for spray-dried dispersions of poorly soluble compounds soft gel enteric coating view project oral sustained release using multi-particulate drug delivery systems (MDDS), view project evaluation of the polymer Soluplus® for Spray-dried dispersions of poorly soluble compounds. 2010; Available from: https://www.researchgate.net/publication/267451324.

Al-Akayleh F, Al-Naji I, Adwan S, et al. Enhancement of curcumin solubility using a novel solubilizing polymer Soluplus®. J Pharm Innov. 2022;17:142–54.

Article  Google Scholar 

AlSheyyab RY, Obaidat RM, Altall YR, et al. Solubility enhancement of nimodipine through preparation of Soluplus® dispersions. J Appl Pharm Sci. 2019;9:30–7.

Article  CAS  Google Scholar 

Fule RA, Meer TS, Sav AR, et al. Artemether-Soluplus hot-melt extrudate solid dispersion systems for solubility and dissolution rate enhancement with amorphous state characteristics. J Pharm. 2013;2013:1–15.

Google Scholar 

Lavra ZMM, Pereira de Santana D, Ré MI. Solubility and dissolution performances of spray-dried solid dispersion of efavirenz in Soluplus. Drug Dev Ind Pharm. 2017;43:42–54.

Zi P, Zhang C, Ju C, et al. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant - Soluplus. Eur J Pharm Sci. 2019;134:233–45.

Article  CAS  PubMed  Google Scholar 

Nandi U, Ajiboye AL, Patel P, et al. Preparation of solid dispersions of simvastatin and Soluplus using a single-step organic solvent-free supercritical fluid process for the drug solubility and dissolution rate enhancement. Pharmaceuticals. 2021;14:846.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attia MS, Elshahat A, Hamdy A, et al. Soluplus® as a solubilizing excipient for poorly water-soluble drugs: recent advances in formulation strategies and pharmaceutical product features. J Drug Deliv Sci Technol. 2023;104519.

Panigrahi KC, Patra CN, Jena GK, Ghose D, Jena J, Panda SK, Sahu M. Gelucire: A versatile polymer for 7modified release drug delivery system. Future J Pharm Sci. 2018;4(1):102–8.

Article  Google Scholar 

Chauhan B, Shimpi S, Paradkar A. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique. AAPS PharmSciTech. 2005;6.

Panda M, Rao MEB, Patra CN, et al. Formulation and development of floating multiple-unit minitablets of Nimodipine without using a gas-generating agent: in vitro and in vivo characterization. Future J Pharm Sci. 2020;6.

Siripuram PK, Bandari S, Jukanti R, et al. Formulation and characterization of floating gelucire matrices of metoprolol succinate. Dissolut Technol. 2010;17:34–9.

Article  CAS  Google Scholar 

Pohlen M, Lavrič Z, Prestidge C, et al. Preparation, physicochemical characterisation and DoE optimisation of a spray-dried dry emulsion platform for delivery of a poorly soluble drug, simvastatin. AAPS PharmSciTech. 2020;21.

Surti N, Mahajan AN, Patel D, et al. Spray dried solid dispersion of repaglinide using hypromellose acetate succinate: in vitro and in vivo characterization. Drug Dev Ind Pharm. 2020;46:1622–31.

Article  CAS  PubMed  Google Scholar 

Abdelhaleem Ali AM, Khames A, Alrobaian MM, et al. Glucosamine-paracetamol spray-dried solid dispersions with maximized intrinsic dissolution rate, bioavailability and decreased levels of in vivo toxic metabolites. Drug Des Dev Ther. 2018;12:3071–84.

Article  Google Scholar 

Ajiboye AL, Nandi U, Galli M, et al. Olanzapine loaded nanostructured lipid carriers via high shear homogenization and ultrasonication. Sci Pharm. 2021;89.

Qushawy M, Nasr A, Swidan S, et al. Development and characterization of glimepiride novel solid nanodispersion for improving its oral bioavailability. Sci Pharm. 2020;88:1–17.

Article  Google Scholar 

Szabó E, Galata DL, Vass P, et al. Continuous formulation approaches of amorphous solid dispersions: significance of powder flow properties and feeding performance. Pharmaceutics. 2019;11.

Muqtader Ahmed M, Fatima F, Abul Kalam M, et al. Development of spray-dried amorphous solid dispersions of tadalafil using glycyrrhizin for enhanced dissolution and aphrodisiac activity in male rats. Saudi Pharm J. 2020;28:1817–26.

Article  PubMed  PubMed Central  Google Scholar 

Rani Avula P. Quality by design approach for development of amorphous solid dispersions of efavirenz by melt-quench technique. Vol Essent Oils. 2022. p. 43–59.

Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4:18–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2211383513000968.

Goyal MK, Dubey A, Yadav LK. Formulation and evaluation of gastroretentive drug delivery system of telmisartan. 2015;6:67–71.

CAS  Google Scholar 

Pontip B, Suchada P, Sriamornsak P. Effect of formulations and spray drying process conditions on physical properties of resveratrol spray-dried emulsions. Key Engineering Materials. Trans Tech Publications Ltd; 2019. p. 246–251.

De PK, Sahana B, Rakshit S. Enhancement of dissolution rate and stability study of ofloxacin solid dispersion. Available from: www.pelagiaresearchlibrary.com.

Diós P, Szigeti K, Budán F, et al. Influence of barium sulfate X-ray imaging contrast material on properties of floating drug delivery tablets. Eur J Pharm Sci. 2016;95:46–53.

Article  PubMed  Google Scholar 

Sharma AK, Kumar A, Dutt R. Design and evaluation of gastro-retentive drug delivery system for glimepiride using design of experiment. Int J Pharm Sci Drug Res. 2022;14:101–11.

Article  Google Scholar 

Nielsen CU, Bjerg M, Ulaganathan N, et al. Oral and intravenous pharmacokinetics of taurine in sprague-dawley rats: the influence of dose and the possible involvement of the proton-coupled amino acid transporter, PAT1, in oral taurine absorption. Physiol Rep. 2017;5.

Khalil HA, Elnaggar MM, Belal TS, et al. The effect of hyperlipidemia on the pharmacokinetics, hepatic and pulmonary uptake of posaconazole in rat. Eur J Pharm Sci. 2016;91:190–5.

Article  CAS  PubMed  Google Scholar 

Müller C, Arndt M, Queckenberg C, Cornely OA, Theisohn M. HPLC analysis of the antifungal agent posaconazole in patients with haematological diseases. Mycoses. 2006;49:17–22.

Article  PubMed  Google Scholar 

Khadka P, Sinha S, Tucker IG, et al. Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. Eur J Pharm Biopharm. 2021;162:1–11.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif