Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy

Global tuberculosis report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.

Ufimtseva EG, Eremeeva NI, Umpeleva TV, Vakhrusheva DV, Skornyakov SN. Mycobacterium tuberculosis load in host cells and the antibacterial activity of alveolar macrophages are linked and differentially regulated in various lung lesions of patients with pulmonary tuberculosis. IJMS. 2021;22(7):3452. https://doi.org/10.3390/ijms22073452.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mubarak RA. Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir Res. 2018;19:126.

Article  PubMed  PubMed Central  Google Scholar 

Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 2008;27(7):1110–21. https://doi.org/10.1038/emboj.2008.31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Fattah EA, Liu XD, Jagannath C, Eissa NT. Harnessing of TLR-mediated autophagy to combat mycobacteria in macrophages. Tuberculosis (Edinb). 2013;93(Suppl):S33-37. https://doi.org/10.1016/S1472-9792(13)70008-8.

Article  CAS  PubMed  Google Scholar 

von Both U, Berk M, Agapow PM, et al. Mycobacterium tuberculosis exploits a molecular off switch of the immune system for intracellular survival. Sci Rep. 2018;8(1):661. https://doi.org/10.1038/s41598-017-18528-y.

Article  CAS  Google Scholar 

Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TCG. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci. 2012;109(47):19374–9. https://doi.org/10.1073/pnas.1213110109.

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Yang M, Tang X, et al. Molecular insights of a novel fish Toll-like receptor 9 homologue in Nibea albiflora to reveal its function as PRRs. Fish Shellfish Immunol. 2021;118:321–32. https://doi.org/10.1016/j.fsi.2021.09.021.

Article  CAS  PubMed  Google Scholar 

Shepardson KM, Schwarz B, Larson K, et al. Induction of antiviral immune response through recognition of the repeating subunit pattern of viral capsids is Toll-like receptor 2 dependent. MBio. 2017;8(6): e01356-17. https://doi.org/10.1128/mBio.01356-17.

Article  PubMed  PubMed Central  Google Scholar 

Gosu V, Son S, Shin D, Song KD. Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep. 2019;9(1):3652. https://doi.org/10.1038/s41598-019-39984-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu L, Phillips RL, Zhang D, Teghanemt A, Weiss JP, Gioannini TL. NMR studies of hexaacylated endotoxin bound to wild-type and F126A mutant MD-2 and MD-2·TLR4 ectodomain complexes. J Biol Chem. 2012;287(20):16346–55. https://doi.org/10.1074/jbc.M112.343467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voogdt CGP, Wagenaar JA, van Putten JPM. Duplicated TLR5 of zebrafish functions as a heterodimeric receptor. Proc Natl Acad Sci USA. 2018;115(14):E3221–9. https://doi.org/10.1073/pnas.1719245115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Hu Z, Tanji H, et al. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol. 2018;14(1):58–64. https://doi.org/10.1038/nchembio.2518.

Article  CAS  PubMed  Google Scholar 

Fuchs K, Cardona Gloria Y, Wolz O, et al. The fungal ligand chitin directly binds TLR 2 and triggers inflammation dependent on oligomer size. EMBO Rep. 2018;19(12):e46065. https://doi.org/10.15252/embr.201846065.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bermudez M, Grabowski M, Murgueitio MS, et al. Biological characterization, mechanistic investigation and structure-activity relationships of chemically stable TLR2 antagonists. ChemMedChem. 2020;15(14):1364–71. https://doi.org/10.1002/cmdc.202000060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang WC, Liou CJ, Shen SC, et al. Urolithin A inactivation of TLR3/TRIF signaling to block the NF-κB/STAT1 axis reduces inflammation and enhances antioxidant defense in poly(I:C)-induced RAW264.7 cells. Int J Mol Sci. 2022;23(9):4697. https://doi.org/10.3390/ijms23094697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson JA, Loes AN, Waddell GL, Harms MJ. 2009 Tracing the evolution of novel features of human Toll-like receptor 4. Protein Sci. 2019;28:1350–8. https://doi.org/10.1002/pro.3644.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon JO, Jin WJ, Kim B, Ha H, Kim HH, Lee ZH. Haptoglobin acts as a TLR4 ligand to suppress osteoclastogenesis via the TLR4–IFN-β axis. J Immunol. 2019;202(12):3359–69. https://doi.org/10.4049/jimmunol.1800661.

Article  CAS  PubMed  Google Scholar 

Nicholas SA, Coughlan K, Yasinska I, et al. Dysfunctional mitochondria contain endogenous high-affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions. Int J Biochem Cell Biol. 2011;43(4):674–81. https://doi.org/10.1016/j.biocel.2011.01.012.

Article  CAS  PubMed  Google Scholar 

Lei X, Palomero J, de Rink I, et al. Flagellin/TLR5 stimulate myeloid progenitors to enter lung tissue and to locally differentiate into macrophages. Front Immunol. 2021;12: 621665. https://doi.org/10.3389/fimmu.2021.621665.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions. ChemTexts. 2022;8(2):12. https://doi.org/10.1007/s40828-022-00163-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong AO, Marthi M, Haag A, Owusu IA, Wobus CE, Swanson JA. Macrophage inflammatory state influences susceptibility to lysosomal damage. J Leukoc Biol. 2022;111(3):629–39. https://doi.org/10.1002/JLB.3A0520-325RR.

Article  CAS  PubMed  Google Scholar 

Lim YJ, Yi MH, Choi JA, et al. Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections. Sci Rep. 2016;6:37211. https://doi.org/10.1038/srep37211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate immune system activation, inflammation and corneal wound healing. Int J Mol Sci. 2022;23(23):14933. https://doi.org/10.3390/ijms232314933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunston CR, Griffiths HR. The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol. 2010;161(3):407–16. https://doi.org/10.1111/j.1365-2249.2010.04213.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963–75. https://doi.org/10.1038/cmi.2017.88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–66. https://doi.org/10.1016/j.cell.2020.02.041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irizarry-Caro RA, McDaniel MM, Overcast GR, Jain VG, Troutman TD, Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc Natl Acad Sci USA. 2020;117(48):30628–38. https://doi.org/10.1073/pnas.2009778117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veltkamp M, van Moorsel CHM, Rijkers GT, Ruven HJT, Grutters JC. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens. 2012;79(1):25–32. https://doi.org/10.1111/j.1399-0039,2011.01808.x.

Article  CAS  PubMed  Google Scholar 

Shukla S, Richardson ET, Drage MG, Boom WH, Harding CV. Mycobacterium tuberculosis lipoprotein and lipoglycan binding to Toll-like receptor 2 correlates with agonist activity and functional outcomes. Infect Immun. 2018;86(10): e00450-18. https://doi.org/10.1128/IAI.00450-18.

Article  PubMed  PubMed Central  Google Scholar 

Hu W, Yang S, Shimada Y, et al. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics. 2019;20(1):878. https://doi.org/10.1186/s12864-019-6265-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kielbik M, Szulc-Kielbik I, Klink M. IRAK1 and IRAK4 signaling proteins are dispensable in the response of human neutrophils to Mycobacterium tuberculosis infection. FEMS Microbiol Lett. 2019;366(18):fnz226. https://doi.org/10.1093/femsle/fnz226.

Article 

留言 (0)

沒有登入
gif