The multifaceted therapeutic value of targeting steroid receptor coactivator-1 in tumorigenesis

Meng Z, Wang X;ZhangD, ;Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: the central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis. 2022;9:1281–9. https://doi.org/10.1016/j.gendis.2021.06.009.

Article  CAS  PubMed  Google Scholar 

Onate SA, Spencer TE, Edwards DP, O’Malley BW. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem. 1998;273:12101–8. https://doi.org/10.1074/jbc.273.20.12101.

Article  CAS  PubMed  Google Scholar 

McInerney EM, Rose DW, Flynn SE, Mullen TM, Inostroza J, Torchia J, Nolte RT, Assa-Munt N, et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 1998;12:3357–68. https://doi.org/10.1101/gad.12.21.3357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rohira AD. Steroid receptor coactivators present a unique opportunity for drug development in hormone-dependent cancers. Biochem Pharmacol. 2017;140:1–7. https://doi.org/10.1016/j.bcp.2017.04.005.

Article  CAS  PubMed  Google Scholar 

Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer. 2009;9:615–30. https://doi.org/10.1038/nrc2695.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer TE, Burcin MM, Allis CD, Mizzen CA, Onate SA, Tsai SY, Tsai MJ, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997;389:194–8. https://doi.org/10.1038/38304.

Article  CAS  PubMed  Google Scholar 

Chen H, Lin RJ, Nash A, Nagy L, Privalsky ML, Evans RM. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90:569–80. https://doi.org/10.1016/s0092-8674(00)80516-4.

Article  CAS  PubMed  Google Scholar 

Oñate SA, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270:1354–7. https://doi.org/10.1126/science.270.5240.1354.

Article  PubMed  Google Scholar 

Voegel JJ, Heine MJ, Chambon P, ;Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. Embo j. 1996;15:3667–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torchia J, Rose DW, Kamei Y, Westin S, Glass CK. .;Rosenfeld M.G. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 1997;387:677–84. https://doi.org/10.1038/42652.

Article  CAS  PubMed  Google Scholar 

Li H, Gomes PJ. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A. 1997;94:8479–84. https://doi.org/10.1073/pnas.94.16.8479.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzick SL, Walker RL, Kallioniemi OP, Trent JM. Meltzer P.S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277:965–8. https://doi.org/10.1126/science.277.5328.965.

Article  CAS  PubMed  Google Scholar 

Takeshita A, Cardona GR, Suen CS, Chin WW. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem. 1997;272:27629–34. https://doi.org/10.1074/jbc.272.44.27629.

Article  CAS  PubMed  Google Scholar 

Gilad Y, Lonard DM, O’Malley BW. Steroid receptor coactivators - their role in immunity. Front Immunol. 2022;13:1079011. https://doi.org/10.3389/fimmu.2022.1079011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKenna NJ, Tsai SY, O’Malley BW. Distinct steady-state nuclear receptor coregulator complexes exist in vivo. Proc Natl Acad Sci U S A. 1998;95:11697–702. https://doi.org/10.1073/pnas.95.20.11697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo P, Chen Q, ;Peng K, Xie J, Liu J, Ren W, Tong Z, Li M, Xu J, Zhang Y, et al. Nuclear receptor coactivator SRC-1 promotes colorectal cancer progression through enhancing GLI2-mediated hedgehog signaling. Oncogene. 2022;41:2846–59. https://doi.org/10.1038/s41388-022-02308-8.

Article  CAS  PubMed  Google Scholar 

Jain S, Pulikuri S, Zhu Y, Qi C, Kanwar YS. Differential expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) and its coactivators steroid receptor coactivator-1 and PPAR-binding protein PBP in the brown fat, urinary bladder, colon, and breast of the mouse. Am J Pathol. 1998;153:349–54. https://doi.org/10.1016/s0002-9440(10)65577-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Qi C, Jain S, Rao MS. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem. 1997;272:25500–6. https://doi.org/10.1074/jbc.272.41.25500.

Article  CAS  PubMed  Google Scholar 

Chen S, Johnson BA, Aster S, Mosley R, Moller DE. Both coactivator LXXLL motif-dependent and -independent interactions are required for peroxisome proliferator-activated receptor gamma (PPARgamma) function. J Biol Chem. 2000;275:3733–6. https://doi.org/10.1074/jbc.275.6.3733.

Article  CAS  PubMed  Google Scholar 

Cho MC, Lee WS, Hong JT, Park SW, Paik SG. 5-(3,5-Di-tert-butyl-4-hydroxybenzylidene) thiazolidine-2,4-dione modulates peroxisome proliferators-activated receptor gamma in 3T3-L1 adipocytes: roles as a PPARgamma ligand. Mol Cell Endocrinol. 2005;242:96–102. https://doi.org/10.1016/j.mce.2005.08.005.

Article  CAS  PubMed  Google Scholar 

Qi C, Zhu Y, ;Pan J, Yeldandi AV. Maeda N.;Subbarao V.;Pulikuri S.;Hashimoto T.;Reddy J.K. Mouse steroid receptor coactivator-1 is not essential for peroxisome proliferator-activated receptor alpha-regulated gene expression. Proc Natl Acad Sci U S A. 1999;96:1585–90. https://doi.org/10.1073/pnas.96.4.1585.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mottillo EP, Yang A, Zhou L, Granneman JG. Genetically-encoded sensors to detect fatty acid production and trafficking. Mol Metab. 2019;29:55–64. https://doi.org/10.1016/j.molmet.2019.08.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picard F, Annicotte J, Rocchi S, Champy MF, O’Malley BW. Chambon P.;Auwerx J. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell. 2002;111:931–41. https://doi.org/10.1016/s0092-8674(02)01169-8.

Article  CAS  PubMed  Google Scholar 

Shen L, Liu Y, ;Tso P, Wang DQ, Woods SC. Silencing steroid receptor coactivator-1 in the nucleus of the solitary tract reduces estrogenic effects on feeding and apolipoprotein A-IV expression. J Biol Chem. 2018;293:2091–101. https://doi.org/10.1074/jbc.RA117.000237.

Article  CAS  PubMed  Google Scholar 

Yamamuro T, Nakamura S, Yanagawa K, Tokumura A. Kawabata T.;Fukuhara A.;Teranishi H.;Hamasaki M.;Shimomura I.;Yoshimori T. Loss of RUBCN/rubicon in adipocytes mediates the upregulation of autophagy to promote the fasting response. Autophagy. 2022;18:2686–96. https://doi.org/10.1080/15548627.2022.2047341.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou B, Jia L, ;Zhang Z, Xiang L, Zheng P, Liu B et al. Ren X.;Bian H.;Xie L.,. The Nuclear Orphan Receptor NR2F6 Promotes Hepatic Steatosis through Upregulation of Fatty Acid Transporter CD36. Adv Sci (Weinh). 2020, 7, 2002273. https://doi.org/10.1002/advs.202002273.

Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Akhmedov A, Dalgaard K, Pospisilik JA, et al. Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J. 2019;40:383–91. https://doi.org/10.1093/eurheartj/ehx615.

Article  CAS  PubMed  Google Scholar 

Tannour-Louet M, York B, Tang K, Stashi E, Bouguerra H, Zhou S, Yu H, Wong LJ, Stevens RD, et al. Hepatic SRC-1 activity orchestrates transcriptional circuitries of amino acid pathways with potential relevance for human metabolic pathogenesis. Mol Endocrinol. 2014;28:1707–18. https://doi.org/10.1210/me.2014-1083.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louet JF, Chopra AR, York B, Tannour-Louet M, Saha PK, Wenner BR, Ilkayeva OR, et al. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab. 2010;12:606–18. https://doi.org/10.1016/j.cmet.2010.11.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motamed M, Rajapakshe KI, Moses RE, O’Malley BW. Steroid receptor coactivator 1 is an integrator of glucose and NAD+/NADH homeostasis. Mol Endocrinol. 2014;28:395–405. https://doi.org/10.1210/me.2013-1404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahima RS;Mantzoros C.;Qu D.;Lowell, Maratos-Flier B, Flier E. J.S. Role of leptin in the neuroendocrine response to fasting. Nature. 1996, 382, 250–252. https://doi.org/10.1038/382250a0.

van der Yang Y. Zhu L;Cacciottolo TM;He Y;Stadler LKJ;Wang C;Xu P;Saito K;Hinton A Jr, Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nat Commun. 2019, 10, 1718. https://doi.org/10.1038/s41467-019-08737-6.

Bian C, Huang Y, ;Zhu H, Zhao Y, Zhao J;ZhangJ. Steroid receptor Coactivator-1 knockdown decreases synaptic plasticity and impairs spatial memory in the H

留言 (0)

沒有登入
gif