Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration

Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392:1147–59.

Article  PubMed  Google Scholar 

ElSheikh RH, Chauhan MZ, Sallam AB. Current and novel therapeutic approaches for treatment of neovascular age-related macular degeneration. Biomolecules. 2022;12:1629.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheong KX, Cheung CMG, Teo KYC. Review of fibrosis in neovascular age-related macular degeneration. Am J Ophthalmol. 2023;246:192–222.

Article  CAS  PubMed  Google Scholar 

Papadopoulos Z. Recent developments in the treatment of wet age-related macular degeneration. Curr Med Sci. 2020;40:851–7.

Article  PubMed  Google Scholar 

Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 2016;142:19–25.

Article  CAS  PubMed  Google Scholar 

Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res. 2021;83: 100919.

Article  PubMed  Google Scholar 

Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.

Article  CAS  PubMed  Google Scholar 

Skarphedinsdottir SB, Eysteinsson T, Árnason SS. Mechanisms of ion transport across the mouse retinal pigment epithelium measured in vitro. Invest Ophthalmol Vis Sci. 2020;61:31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29.

Article  CAS  PubMed  Google Scholar 

Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30:296–323.

Article  CAS  PubMed  Google Scholar 

Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM. Role of epithelial–mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol. 2020;8:501.

Article  PubMed  PubMed Central  Google Scholar 

Han JW, Lyu J, Park YJ, Jang SY, Park TK. Wnt/β-catenin signaling mediates regeneration of retinal pigment epithelium after laser photocoagulation in mouse eye. Invest Ophthalmol Vis Sci. 2015;56:8314–24.

Article  CAS  PubMed  Google Scholar 

Lee YI, Shim JE, Kim J, Lee WJ, Kim JW, Nam KH, Lee JH. WNT5A drives interleukin-6-dependent epithelial–mesenchymal transition via the JAK/STAT pathway in keloid pathogenesis. Burns Trauma. 2022;10: tkac023.

Article  PubMed  PubMed Central  Google Scholar 

Carneiro I, Quintela-Vieira F, Lobo J, Moreira-Barbosa C, Menezes FD, Martins AT, Oliveira J, Silva R, Jeronimo C, Henrique R. Expression of EMT-related genes CAMK2N1 and WNT5A is increased in locally invasive and metastatic prostate cancer. J Cancer. 2019;10:5915–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Tang Z, Gong H, Zhu L, Liu X. Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep. 2017;37: BSR20171092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Du J, Zheng J, Liu J, Xu R, Shen T, Zhu Y, Chang J, Wang H, Zhang Z, et al. EGF-reduced Wnt5a transcription induces epithelial–mesenchymal transition via Arf6-ERK signaling in gastric cancer cells. Oncotarget. 2015;6:7244–61.

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Liu CH, Huang S, Chen J. Wnt signaling in vascular eye diseases. Prog Retin Eye Res. 2019;70:110–33.

Article  CAS  PubMed  Google Scholar 

Asem MS, Buechler S, Wates RB, Miller DL, Stack MS. Wnt5a signaling in cancer. Cancers (Basel). 2016;8:79.

Article  PubMed  Google Scholar 

Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4: e115.

Article  PubMed  PubMed Central  Google Scholar 

Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schuster G, Heinzelmann K, Günther A, Bracke KR, Dagouassat M, et al. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. J Exp Med. 2017;214:143–63.

Article  PubMed  PubMed Central  Google Scholar 

Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, Yin J, Liang X, Liu Z. Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022;40:1550-1565.e1557.

Article  CAS  PubMed  Google Scholar 

Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science. 2012;338:108–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi Y, Zhang W, Li G, Niu L, Zhang Y, Tang R, Feng G. An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model. Faseb j. 2020;34:11115–32.

Article  CAS  PubMed  Google Scholar 

Endo M, Kamizaki K, Minami Y. The Ror-family receptors in development, tissue regeneration and age-related disease. Front Cell Dev Biol. 2022;10: 891763.

Article  PubMed  PubMed Central  Google Scholar 

Zou Y, Pan L, Shen Y, Wang X, Huang C, Wang H, Jin X, Yin C, Wang Y, Jia J, et al. Cardiac Wnt5a and Wnt11 promote fibrosis by the crosstalk of FZD5 and EGFR signaling under pressure overload. Cell Death Dis. 2021;12:877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai WW, Tang ZY, Shan TC, Jing XJ, Li P, Qin WD, Song P, Wang B, Xu J, Liu Z, et al. Up-regulation of paired-related homeobox 2 promotes cardiac fibrosis in mice following myocardial infarction by targeting of Wnt5a. J Cell Mol Med. 2020;24:2319–29.

Article  CAS  PubMed  Google Scholar 

Carmo-Fernandes A, Puschkarow M, Peters K, Gnipp S, Peters M. The pathogenic role of smooth muscle cell-derived Wnt5a in a murine model of lung fibrosis. Pharmaceuticals (Basel). 2021;14:755.

Article  CAS  PubMed  Google Scholar 

Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, Emoto N, Hirata K, Tanaka Y, Minami Y. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells. 2013;18:608–19.

Article  CAS  PubMed  Google Scholar 

Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, Zhang Y. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang P, Wang H, Luo X, Liu H, Lu B, Li T, Yang S, Gu Q, Li B, Wang F, Sun X. MicroRNA-155 inhibits polarization of macrophages to M2-type and suppresses choroidal neovascularization. Inflammation. 2018;41:143–53.

Article  CAS  PubMed  Google Scholar 

Zhang C, Xie H, Yang Q, Yang Y, Li W, Tian H, Lu L, Wang F, Xu JY, Gao F, et al. Erythropoietin protects outer blood-retinal barrier in experimental diabetic retinopathy by up-regulating ZO-1 and occludin. Clin Exp Ophthalmol. 2019;47:1182–97.

Article  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

Article  CAS  PubMed  Google Scholar 

Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev. 2020;60: 101063.

Article  CAS  PubMed  Google Scholar 

Zandi S, Li Y, Jahnke L, Schweri-Olac A, Ishikawa K, Wada I, Nakao S, Zinkernagel MS, Enzmann V. Animal model of subretinal fibrosis without active choroidal neovascularization. Exp Eye Res. 2023;229: 109428.

Article  CAS  PubMed  Google Scholar 

Dong Y, Fan H, Zhang Z, Jiang F, Li M, Zhou H, Guo W, Zhang Z, Kang Z, Gui Y, et al. Berberine ameliorates DSS-induced intestinal mucosal barrier dysfunction through microbiota-dependence and Wnt/β-catenin pathway. Int J Biol Sci. 2022;18:1381–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif