Cellular and molecular mechanisms of skin wound healing

de Bont, C. M., Boelens, W. C. & Pruijn, G. J. M. NETosis, complement, and coagulation: a triangular relationship. Cell. Mol. Immunol. 16, 19–27 (2019).

Article  PubMed  Google Scholar 

Berntorp, E. et al. Haemophilia. Nat. Rev. Dis. Prim. 7, 45 (2021).

Article  PubMed  Google Scholar 

Peyvandi, F., Bolton-Maggs, P. H., Batorova, A. & De Moerloose, P. Rare bleeding disorders. Haemophilia 18, 148–153 (2012).

Article  PubMed  Google Scholar 

Golebiewska, E. M. & Poole, A. W. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 29, 153–162 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szpaderska, A. M., Egozi, E. I., Gamelli, R. L. & DiPietro, L. A. The effect of thrombocytopenia on dermal wound healing. J. Invest. Dermatol. 120, 1130–1137 (2003).

Article  CAS  PubMed  Google Scholar 

Gaertner, F. & Massberg, S. Blood coagulation in immunothrombosis — at the frontline of intravascular immunity. Semin. Immunol. 28, 561–569 (2016).

Article  CAS  PubMed  Google Scholar 

Burzynski, L. C. et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity 50, 1033–1042.e6 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garlick, J. A. & Taichman, L. B. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab. Invest. 70, 916–924 (1994).

CAS  PubMed  Google Scholar 

Matoltsy, A. G. & Viziam, C. B. Further observations on epithelialization of small wounds: an autoradiographic study of incorporation and distribution of 3H-thymidine in the epithelium covering skin wounds. J. Invest. Dermatol. 55, 20–25 (1970).

Article  CAS  PubMed  Google Scholar 

Park, S. et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat. Cell Biol. 19, 155–163 (2017). Despite it being extremely difficult, this study shows live imaging of wound epidermal cells as they migrate during healing of mammalian skin. Additionally, the migratory tracks are clear and show how there is a zone of cell division back from the migratory front. This study even hints at orientation of wound-induced cell divisions.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Turley, J., Chenchiah, I. V., Martin, P., Liverpool, T. B. & Weavers, H. Deep learning for rapid analysis of cell divisions in vivo during epithelial morphogenesis and repair. eLife https://doi.org/10.7554/elife.87949.1 (2023).

Molinie, N. & Gautreau, A. Directional collective migration in wound healing assays. Methods Mol. Biol. 1749, 11–19 (2018).

Article  CAS  PubMed  Google Scholar 

Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werner, S. et al. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl Acad. Sci. USA 89, 6896–6900 (1992).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werner, S. et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266, 819–822 (1994). Before this study, several growth factors had been applied to wounds to enhance repair, but this study and its sister paper (Werner et al.15) showed that KGF (also known as FGF7) is upregulated by wound dermal cells and, if its receptor is inactivated in keratinocytes, then wound healing is blocked.

Article  CAS  PubMed  Google Scholar 

Meyer, M. et al. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J. Cell Sci. 125, 5690–5701 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallini, S. et al. Injury prevents Ras mutant cell expansion in mosaic skin. Nature 619, 167–175 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

Article  CAS  PubMed  Google Scholar 

Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H. & Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 16, 585–601 (2008).

Article  PubMed  Google Scholar 

Chmielowiec, J. et al. c-Met is essential for wound healing in the skin. J. Cell Biol. 177, 151–162 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grose, R., Harris, B. S., Cooper, L., Topilko, P. & Martin, P. Immediate early genes krox-24 and krox-20 are rapidly up-regulated after wounding in the embryonic and adult mouse. Dev. Dyn. 223, 371–378 (2002).

Article  CAS  PubMed  Google Scholar 

Martin, P. & Nobes, C. D. An early molecular component of the wound healing response in rat embryos — induction of c-fos protein in cells at the epidermal wound margin. Mech. Dev. 38, 209–215 (1992).

Article  CAS  PubMed  Google Scholar 

Pearson, J. C., Juarez, M. T., Kim, M., Drivenes, Ø. & McGinnis, W. Multiple transcription factor codes activate epidermal wound-response genes in Drosophila. Proc. Natl Acad. Sci. USA 106, 2224–2229 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, H. et al. Landscape of the epigenetic regulation in wound healing. Front. Physiol. 13, 949498 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Shaw, T. & Martin, P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep. 10, 881–886 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levra Levron, C. et al. Tissue memory relies on stem cell priming in distal undamaged areas. Nat. Cell Biol. 25, 740–753 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wood, W. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912 (2002).

Article  CAS  PubMed  Google Scholar 

Haensel, D. et al. Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics. Cell Rep. 30, 3932–3947.e6 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schäfer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).

Article  PubMed  Google Scholar 

Grose, R. et al. A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).

Article  CAS  PubMed  Google Scholar 

Jacobsen, J. N., Steffensen, B., Häkkinen, L., Krogfelt, K. A. & Larjava, H. S. Skin wound healing in diabetic β6 integrin-deficient mice. APMIS 118, 753–764 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McAndrews, K. M. et al. Dermal αSMA+ myofibroblasts orchestrate skin wound repair via β1 integrin and independent of type I collagen production. EMBO J. 41, e109470 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, P. et al. Loss of integrin α9β1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J. Invest. Dermatol. 129, 217–228 (2009).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif