Phylogenomics resolves the higher-level phylogeny of herbivorous eriophyoid mites (Acariformes: Eriophyoidea)

Zhang Z-Q. Phylum Arthropoda von Siebold, 1848 In: Zhang Z-Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;3148(1):99–103.

Zhang Z-Q. Eriophyoidea and allies: where do they belong? Syst Appl Acarol. 2017;22:1091–5.

Google Scholar 

Li N, Sun J-T, Yin Y, Hong X-Y, Xue X-F. Global patterns and drivers of herbivorous eriophyoid mite species diversity. J Biogeogr. 2023;50:330–40.

Article  Google Scholar 

Amrine JW Jr, Stasny TAH, Flechtmann CHW. Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Michigan: Indira Publishing House; 2003.

Google Scholar 

de Lillo E, Pozzebon A, Valenzano D, Duso C. An intimate relationship between eriophyoid mites and their host plants. Front Plant Sci. 2018;9:1786.

Article  PubMed  PubMed Central  Google Scholar 

Boczek JH. Generic key to Eriophyoidea. Zesz Probl Post Nauk Roln. 1966;65:177–87.

Google Scholar 

Schevchenko VG. The current state of nomenclature of Tetrapodili (Acari). Plant Protect. 1974;12:37–8.

Google Scholar 

Newkirk RA, Keifer HH. Eriophyoidea: synoptic keys to groups and genera. In: Jeppson LR, Keifer HH, Baker EW, editors. Mites jnjurious to economic plants. Berkeley: University of California Press; 1975. p. 562–87.

Google Scholar 

Boczek JH, Ševčenko VG, Davis R. Generic key to world fauna of eriophyid mites: (Acarida: Eriophyoidea). Warsaw: Warsaw Agricultural University Press; 1989.

Google Scholar 

Amrine JW Jr, Stasny TAH. Catalog of the Eriophyoidea (Acarina: Prostigmata) of the world. Michigan: Indira Publishing House; 1994.

Google Scholar 

Li H-S, Xue X-F, Hong X-Y. Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system. Mol Phylogenet Evol. 2014;78:185–98.

Article  PubMed  Google Scholar 

Lindquist EE, Amrine JW Jr. Systematics, diagnoses for major taxa, and keys to families and genera with species on plants of economic importance. In: Lindquist EE, Sabelis MW, Bruin J, editors. Eriophyoid mites: their biology, natural enemies and control. Amsterdam: Elsevier; 1996. p. 33–87.

Chapter  Google Scholar 

Lindquist EE, Oldfield GN. Evolution and phylogeny. In: Lindquist EE, Sabelis MW, Bruin J, editors. Eriophyoid mites: their biology, natural enemies and control. Amsterdam: Elsevier; 1996. p. 277–300.

Chapter  Google Scholar 

de Lillo E, Skoracka A. What’s “cool” on eriophyoid mites? Exp Appl Acarol. 2010;51(1):3–30.

Article  PubMed  Google Scholar 

Klimov PB, OConnor BM, Chetverikov PE, Bolton SJ, Pepato AR, Mortazavi AL, Tolstikov AV, Bauchan GR, Ochoa R. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol Phylogenet Evol. 2018;119:105–17.

Article  PubMed  Google Scholar 

Chetverikov PE, Craemer C, Cvrković T, Klimov PB, Petanović RU, Romanovich AE, Sukhareva SI, Zukoff SN, Bolton S, Amrine JW Jr. Molecular phylogeny of the phytoparasitic mite family Phytoptidae (Acariformes: Eriophyoidea) identified the female genitalic anatomy as a major macroevolutionary factor and revealed multiple origins of gall induction. Exp Appl Acarol. 2021;83(1):31–68.

Article  CAS  PubMed  Google Scholar 

Xue X-F, Yao L-F, Yin Y, Liu Q, Li N, Hoffmann AA, Sun J-T, Hong X-Y. Macroevolutionary analyses point to a key role of hosts in diversification of the highly speciose eriophyoid mite superfamily. Mol Phylogenet Evol. 2023;179:107676.

Article  PubMed  Google Scholar 

Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27(8):1767–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Timmermans MJTN, Vogler AP. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol. 2012;63(2):299–304.

Article  PubMed  Google Scholar 

Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biol Evol. 2014;69(12):3326–43.

Article  Google Scholar 

Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liu X, Garzón-Orduña IJ, Winterton SL, Yan Y, Aspöck U, Aspöck H, Yang D. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics. 2016;33:617–36.

Article  PubMed  Google Scholar 

Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dussès D, Křížková B, Roisin Y, Evans TA. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol. 2017;34:589–97.

CAS  PubMed  Google Scholar 

Song F, Li H, Liu GH, Wang W, James P, Colwell DD, Tran A, Gong S, Cai W, Shao R. Mitochondrial genome fragmentation unites the parasitic lice of eutherian mammals. Syst Biol. 2019;68(3):430–40.

Article  CAS  PubMed  Google Scholar 

Ge X, Peng L, Vogler AP, Morse JC, Yang L, Sun C, Wang B. Massive gene rearrangements of mitochondrial genomes and implications for the phylogeny of Trichoptera (Insecta). Syst Entomol. 2023;48(2):278–95.

Article  Google Scholar 

Masta SE, Longhorn SJ, Boore JL. Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses. Mol Phylogenet Evol. 2009;50:117–28.

Article  CAS  PubMed  Google Scholar 

Masta SE, McCall A, Longhorn SJ. Rare genomic changes and mitochondrial sequences provide independent support for congruent relationships among the sea spiders (Arthropoda, Pycnogonida). Mol Phylogenet Evol. 2010;57:59–70.

Article  CAS  PubMed  Google Scholar 

Li W-N, Shao R, Zhang Q, Deng W, Xue X-F. Mitochondrial genome reorganization characterizes various lineages of mesostigmatid mites (Acari: Parasitiformes). Zool Scr. 2019;48(5):679–89.

Article  CAS  Google Scholar 

Arribas P, Andújar C, Moraza ML, Linard B, Emerson BC, Vogler AP. Mitochondrial metagenomics reveals the ancient origin and phylodiversity of soil mites and provides a phylogeny of the Acari. Mol Biol Evol. 2020;37(3):683–94.

Article  CAS  PubMed  Google Scholar 

Ban X-C, Shao Z-K, Wu L-J, Sun J-T, Xue X-F. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics. 2022;38(4):452–64.

Article  CAS  PubMed  Google Scholar 

Boore JL, Brown WM. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev. 1998;8(6):668–74.

Article  CAS  PubMed  Google Scholar 

Boore JL, Lavrov DV, Brown WM. Gene translocation links insects and crustaceans. Nature. 1998;392:667–8.

Article  CAS  PubMed  Google Scholar 

Rokas A, Holland PWH. Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol. 2000;15:454–9.

Article  CAS  PubMed  Google Scholar 

Dowton M, Castro LR, Austin AD. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology.’ Invertebr Syst. 2002;16:345–56.

Article  Google Scholar 

Xue X-F, Guo J-F, Dong Y, Hong X-Y, Shao R. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep. 2016;6(1):1–12.

CAS  Google Scholar 

Xue X-F, Dong Y, Deng W, Hong X-Y, Shao R. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol Phylogenet Evol. 2017;109:271–82.

Article  CAS  PubMed  Google Scholar 

Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS, Lutova LA, Tolstikov AV. Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Sci Rep. 2022;12(1):3811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staton JL, Daehler LL, Brown WM. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes. Mol Biol Evol. 1997;14(8):867–74.

Article  CAS  PubMed  Google Scholar 

Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. The rise of angiosperms pushed conifers to decline during global cooling. Proc Natl Acad Sci U S A. 2020;117(46):28867–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chetverikov PE, Cvrkovic T, Makunin A, Sukhareva S, Vidovic B, Petanovic R. Basal divergence of Eriophyoidea (Acariformes, Eupodina) inferred from combined partial COI and 28S gene sequences and CLSM genital anatomy. Exp Appl Acarol. 2015;67(2):219–45.

Article  CAS  PubMed  Google Scholar 

Pepato AR, Costa SGDS, Harvey MS, Klimov PB. One-way ticket to the blue: a large-scale, dated phylogeny revealed asymmetric land-to-water transitions in acariform mites (Acari: Acariformes). Mol Phylogenet Evol. 2022;177:107626.

Article  PubMed  Google Scholar 

Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61:717–26.

Article  PubMed  Google Scholar 

Finet C, Decaras A, Armisen D, Khila A. The achaete-scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proc R Soc B. 2018;2018(285):20182387.

Article 

留言 (0)

沒有登入
gif