Severe induction of aberrant DNA methylation by nodular gastritis in adults

Ikuse T, Ohtsuka Y, Obayashi N, et al. Host response genes associated with nodular gastritis in Helicobacter pylori infection. Pediatr Int. 2018;60:446–54. https://doi.org/10.1111/ped.13527.

Article  CAS  PubMed  Google Scholar 

Nishikawa I, Kato J, Terasoma S, et al. Nodular gastritis in association with gastric cancer development before and after Helicobacter pylori eradication. JGH Open. 2018;2:80–6. https://doi.org/10.1002/jgh3.12049.

Article  PubMed  PubMed Central  Google Scholar 

Okamoto K, Kodama M, Mizukami K, et al. Immunohistochemical differences in gastric mucosal damage between nodular and non-nodular gastritis caused by Helicobacter pylori infection. J Clin Biochem Nutr. 2021;69:216–21. https://doi.org/10.3164/jcbn.20-179.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toyoshima O, Nishizawa T, Koike K. Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis. World J Gastroenterol. 2020;26:466–77. https://doi.org/10.3748/wjg.v26.i5.466.

Article  PubMed  PubMed Central  Google Scholar 

Shiotani A, Kamada T, Kumamoto M, et al. Nodular gastritis in Japanese young adults: endoscopic and histological observations. J Gastroenterol. 2007;42:610–5. https://doi.org/10.1007/s00535-007-2073-5.

Article  PubMed  Google Scholar 

Asada K, Nakajima T, Shimazu T, et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. Gut. 2015;64:388–96. https://doi.org/10.1136/gutjnl-2014-307094.

Article  CAS  PubMed  Google Scholar 

Maeda M, Nakajima T, Oda I, et al. High impact of methylation accumulation on metachronous gastric cancer: 5-year follow-up of a multicentre prospective cohort study. Gut. 2017;66:1721–3. https://doi.org/10.1136/gutjnl-2016-313387.

Article  PubMed  Google Scholar 

Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–95. https://doi.org/10.1158/1078-0432.Ccr-05-2096.

Article  CAS  PubMed  Google Scholar 

Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: the current state and clinical perspectives. Semin Cancer Biol. 2018;51:36–49. https://doi.org/10.1016/j.semcancer.2017.12.004.

Article  CAS  PubMed  Google Scholar 

Schneider BG, Mera R, Piazuelo MB, et al. DNA methylation predicts progression of human gastric lesions. Cancer Epidemiol Biomark Prev. 2015;24:1607–13. https://doi.org/10.1158/1055-9965.Epi-15-0388.

Article  CAS  Google Scholar 

Yamashita S, Kishino T, Takahashi T, et al. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc Natl Acad Sci U S A. 2018;115:1328–33. https://doi.org/10.1073/pnas.1717340115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee YC, Chiang TH, Chou CK, et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology. 2016;150:1113-24.e5. https://doi.org/10.1053/j.gastro.2016.01.028.

Article  PubMed  Google Scholar 

Usui G, Matsusaka K, Mano Y, et al. DNA methylation and genetic aberrations in gastric cancer. Digestion. 2021;102:25–32. https://doi.org/10.1159/000511243.

Article  CAS  PubMed  Google Scholar 

Kamada T, Tanaka A, Yamanaka Y, et al. Nodular gastritis with Helicobacter pylori infection is strongly associated with diffuse-type gastric cancer in young patients. Dig Endosc. 2007;19:180–4. https://doi.org/10.1111/j.1443-1661.2007.00750.x.

Article  Google Scholar 

Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 2002;31:141–9. https://doi.org/10.1038/ng892.

Article  CAS  PubMed  Google Scholar 

Takeshima H, Niwa T, Yamashita S, et al. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 2020;130:5370–9. https://doi.org/10.1172/jci124070.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi C, Sato J, Yamashita S, et al. Autoimmune gastritis induces aberrant DNA methylation reflecting its carcinogenic potential. J Gastroenterol. 2022. https://doi.org/10.1007/s00535-021-01848-2.

Article  PubMed  PubMed Central  Google Scholar 

Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36:247–77. https://doi.org/10.1146/annurev-immunol-051116-052415.

Article  CAS  PubMed  Google Scholar 

Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14:101–12. https://doi.org/10.1007/s10120-011-0041-5.

Kaneko S, Yoshimura T. Time trend analysis of gastric cancer incidence in Japan by histological types, 1975–1989. Br J Cancer. 2001;84:400–5. https://doi.org/10.1054/bjoc.2000.1602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ueda S, Yamashita S, Watanabe SI, et al. Influence of degree of DNA degradation in formalin-fixed and paraffin-embedded tissue samples on accuracy of genome-wide DNA methylation analysis. Epigenomics. 2021;13:565–76. https://doi.org/10.2217/epi-2020-0431.

Article  CAS  PubMed  Google Scholar 

Iida N, Okuda Y, Ogasawara O, et al. MACON: a web tool for computing DNA methylation data obtained by the illumina infinium human DNA methylation BeadArray. Epigenomics. 2018;10:249–58. https://doi.org/10.2217/epi-2017-0093.

Article  CAS  PubMed  Google Scholar 

Yamashita S, Nanjo S, Rehnberg E, et al. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori. Clin Epigenetics. 2019;11:191. https://doi.org/10.1186/s13148-019-0789-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinius LE, Acevedo N, Joerink M, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7: e41361. https://doi.org/10.1371/journal.pone.0041361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

Article  CAS  PubMed  Google Scholar 

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.

Article  CAS  Google Scholar 

Takeshima H, Yamashita S, Shimazu T, et al. The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res. 2009;19:1974–82. https://doi.org/10.1101/gr.093310.109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

Article  CAS  PubMed  Google Scholar 

da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. https://doi.org/10.1038/nprot.2008.211.

Article  CAS  PubMed  Google Scholar 

da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. https://doi.org/10.1093/nar/gkn923.

Article  CAS  PubMed  Google Scholar 

Song JZ, Stirzaker C, Harrison J, et al. Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene. 2002;21:1048–61. https://doi.org/10.1038/sj.onc.1205153.

Article  CAS  PubMed  Google Scholar 

De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5’ region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 2004;24:4781–90. https://doi.org/10.1128/mcb.24.11.4781-4790.2004.

Article  PubMed  PubMed Central  Google Scholar 

Koide T, Koyanagi-Aoi M, Uehara K, et al. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25: 104314. https://doi.org/10.1016/j.isci.2022.104314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Wang M, Ao D, et al. CXCL13-CXCR5 axis: regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer. 2022;1877: 188799. https://doi.org/10.1016/j.bbcan.2022.188799.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif