Immunization-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection

Sprenger, K. G., Louveau, J. E., Murugan, P. M. & Chakraborty, A. K. Optimizing immunization protocols to elicit broadly neutralizing antibodies. Proc. Natl Acad. Sci. USA 117, 20077–20087 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hvidt, A. K. et al. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front. Med. (Lausanne) 9, 994160 (2022).

Article  PubMed  Google Scholar 

Sogaard, O. S. et al. Characteristics associated with serological COVID-19 vaccine response and durability in an older population with significant comorbidity: the danish nationwide ENFORCE Study. Clin. Microbiol. Infect. 28, 1126–1133 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Klein, J. S. & Bjorkman, P. J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog. 6, e1000908 (2010).

Article  PubMed  PubMed Central  Google Scholar 

van de Sandt, C. E., Kreijtz, J. H. & Rimmelzwaan, G. F. Evasion of influenza a viruses from innate and adaptive immune responses. Viruses 4, 1438–1476 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Ahmad, L. Implication of SARS-CoV-2 immune escape spike variants on secondary and vaccine breakthrough infections. Front. Immunol. 12, 742167 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Welsh, R. M., Che, J. W., Brehm, M. A. & Selin, L. K. Heterologous immunity between viruses. Immunol. Rev. 235, 244–266 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, D. B. et al. Specificity and degeneracy of T cells. Mol. Immunol. 40, 1047–1055 (2004).

Article  CAS  PubMed  Google Scholar 

Nikolich-Zugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

Article  CAS  PubMed  Google Scholar 

Long, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204 (2020).

Article  CAS  PubMed  Google Scholar 

Ibarrondo, F. J. et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild covid-19. N. Engl. J. Med. 383, 1085–1087 (2020).

Article  PubMed  Google Scholar 

Wang, K. et al. Longitudinal dynamics of the neutralizing antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clin. Infect. Dis. 73, e531–e539 (2021).

Article  CAS  PubMed  Google Scholar 

Huang, M. et al. Temporal antibody responses to SARS-CoV-2 in patients of coronavirus disease 2019. Cell Discov. 6, 64 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, L. et al. High neutralizing antibody titer in intensive care unit patients with COVID-19. Emerg. Microbes Infect. 9, 1664–1670 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, C. et al. Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nat. Commun. 12, 4984 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goel, R. R. et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 374, abm0829 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Hou, H. et al. Immunologic memory to SARS-CoV-2 in convalescent COVID-19 patients at 1 year postinfection. J. Allergy Clin. Immunol. 148, 1481–1492.e1482 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vardhana, S., Baldo, L., Morice, W. G. & Wherry, E. J. Understanding T cell responses to COVID-19 is essential for informing public health strategies. Sci. Immunol. 7, eabo1303 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and uexposed individuals. Cell 181, 1489–1501.e1415 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oberhardt, V. et al. Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, T. S., Hufford, M. M., Sun, J., Fu, Y. X. & Braciale, T. J. Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection. J. Exp. Med. 207, 1161–1172 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, T. S., Sun, J. & Braciale, T. J. T cell responses during influenza infection: getting and keeping control. Trends Immunol. 32, 225–231 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takamura, S. et al. The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen. J. Exp. Med. 207, 1153–1160 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zammit, D. J., Cauley, L. S., Pham, Q. M. & Lefrancois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zammit, D. J., Turner, D. L., Klonowski, K. D., Lefrancois, L. & Cauley, L. S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24, 439–449 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jelley-Gibbs, D. M. et al. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J. Exp. Med. 202, 697–706 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9, 153–161 (2009).

Article  CAS  PubMed  Google Scholar 

Tamburini, B. A., Burchill, M. A. & Kedl, R. M. Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection. Nat. Commun. 5, 3989 (2014).

Article  CAS  PubMed  Google Scholar 

Kedl, R. M. et al. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat. Commun. 8, 2034 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Walsh, S. M. et al. Molecular tracking devices quantify antigen distribution and archiving in the murine lymph node. Elife 10, e62781 (2021).

Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

Article  CAS  PubMed  Google Scholar 

Fenwick, C. et al. T-cell exhaustion in HIV infection. Immunol. Rev. 292, 149–163 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, G. E. et al. Epigenetic features of HIV-induced T-cell exhaustion persist despite early antiretroviral therapy. Front. Immunol. 12, 647688 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin, H. & Wherry, E. J. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19, 408–415 (2007).

Article  CAS  PubMed  Google Scholar 

Doan, T. A., Forward, T. & Tamburini, B. A. J. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol. Life Sci. 79, 275 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucas, E. D. & Tamburini, B. A. J. Lymph node lymphatic endothelial cell expansion and contraction and the programming of the immune response. Front. Immunol. 10, 36 (2019).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif