Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., & Buzsáki, G. (2012). Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. Journal of Neuroscience, 32(2), 423–435.
Article CAS PubMed Google Scholar
Berke, J. D., Okatan, M., Skurski, J., & Eichenbaum, H. B. (2004). Oscillatory entrainment of striatal neurons in freely moving rats. Neuron, 43(6), 883–896.
Article CAS PubMed Google Scholar
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.
Article CAS PubMed Google Scholar
Brunel, N., & Wang, X.-J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of Neurophysiology, 90(1), 415–430.
Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35, 203–225.
Article PubMed PubMed Central Google Scholar
Chrobak, J., & Buzsáki, G. (1998). Gamma oscillations in the entorhinal cortex of the freely behaving rat. Journal of Neuroscience, 18(1), 388–398.
Article CAS PubMed Google Scholar
Destexhe, A. (2009). Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27, 493–506.
Article MathSciNet PubMed Google Scholar
Destexhe, A., Mainen, Z., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling: From Ions to Networks (pp. 1–25). Cambridge MA: MIT Press.
Di Volo, M., Romagnoni, A., Capone, C., & Destexhe, A. (2019). Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation. Neural Computation, 31(4), 653–680.
Article MathSciNet PubMed Google Scholar
Di Volo, M., & Torcini, A. (2018). Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses. Physical Review Letters, 121(12), 128301.
Article ADS PubMed Google Scholar
El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21, 46–100.
Article MathSciNet PubMed Google Scholar
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2(10), 704–716.
Article CAS PubMed Google Scholar
Geisler, C., Brunel, N., & Wang, X.-J. (2005). Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. Journal of Neurophysiology, 94(6), 4344–4361.
Goldman, J., Kusch, L., Aquilue, D., Yalcinkaya, B., Depannemaecker, D., Ancourt, K., Nghiem, T.-A., Jirsa, V., & Destexhe, A. (2023). A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics. Frontiers in Computational Neuroscience, 16, 1058957.
Article PubMed PubMed Central Google Scholar
Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338(6213), 334–337.
Article ADS CAS PubMed Google Scholar
Kayser, C., Ince, R. A. A., & Panzeri, S. (2012). Analysis of slow (theta) oscillations as a potential temporal reference frame for information coding in sensory cortices. e1002717.
Le Van Quyen, M., Muller, L., Telenczuk, B., Cash, S., Halgren, E., Hatsopoulos, N., Dehghani, N., & Destexhe, A. (2016). High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle. Proceedings of National Academy of Sciences United States of America, 11, 9363–9368.
Mann, E. O., Radcliffe, C. A., & Paulsen, O. (2005). Hippocampal gamma–frequency oscillations: From interneurones to pyramidal cells, and back. The Journal of Physiology, 562(1), 55–63.
Article CAS PubMed Google Scholar
Moghaddam, B., Adams, B., Verma, A., & Daly, D. (1997). Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. Journal of Neuroscience, 17(8), 2921–2927.
Article CAS PubMed Google Scholar
Pinault, D., & Deschênes, M. (1992). Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo. Neuroscience, 51, 245–258.
Popescu, A. T., Popa, D., & Paré, D. (2009). Coherent gamma oscillations couple the amygdala and striatum during learning. Nature Neuroscience, 12(6), 801–807.
Article CAS PubMed PubMed Central Google Scholar
Shaw, A. D., Saxena, N., Jackson, L. E., Hall, J. E., Singh, K. D., & Muthukumaraswamy, S. D. (2015). Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex. European Neuropsychopharmacology, 25(8), 1136–1146.
Article CAS PubMed Google Scholar
Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron, 60(4), 683–697.
Article CAS PubMed PubMed Central Google Scholar
Su, T., Lu, Y., Geng, Y., Lu, W., & Chen, Y. (2018). How could N-methyl-D-aspartate receptor antagonists lead to excitation instead of inhibition? Brain Science Advances, 4(2), 73–98.
Susin, E., & Destexhe, A. (2023). A network model of the modulation of gamma oscillations by NMDA receptors in cerebral cortex. eNeuro, 10, 0157–23.
Susin, E., & Destexhe, A. (2021). Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states. PLOS Computational Biology, 17(9), e1009416.
Article ADS CAS PubMed PubMed Central Google Scholar
Tahvili F., & Destexhe, A. (2023). Program code for mean-field models of gamma-frequency oscillations in networks of excitatory and inhibitory neurons. Zenodo.
Tian, F., Lewis, L. D., Zhou, D. W., Balanza, G. A., Paulk, A. C., Zelmann, R., Peled, N., et al. (2023). Characterizing brain dynamics during ketamine-induced dissociation and subsequent interactions with propofol using human intracranial neurophysiology. Nature Communications, 14(1), 1748.
Article ADS CAS PubMed PubMed Central Google Scholar
Tort, A. B. L., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195–1210.
Article PubMed PubMed Central Google Scholar
Wang, X.-J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–6413.
Article CAS PubMed Google Scholar
Zerlaut, Y., Chemla, S., Chavane, F., & Destexhe, A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of Computational Neuroscience, 44, 45–61.
Article MathSciNet PubMed Google Scholar
Zerlaut, Y., Teleńczuk, B., Deleuze, C., Bal, T., Ouanounou, G., & Destexhe, A. (2016). Heterogeneous firing rate response of mouse layer V pyramidal neurons in the fluctuation‐driven regime. The Journal of Physiology, 594, 3791–3808.
留言 (0)