An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells

Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

Article  CAS  PubMed  Google Scholar 

Hinrichs, A. et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 28, e12664 (2021).

Article  PubMed  Google Scholar 

Reichart, B. et al. Pig-to-non-human primate heart transplantation: the final step toward clinical xenotransplantation? J. Heart Lung Transplant. 39, 751–757 (2020).

Article  PubMed  Google Scholar 

Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016).

Article  CAS  Google Scholar 

Khan, S. A. et al. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Rep. 35, 109233 (2021).

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 550, 393–397 (2017).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kinoshita, M. et al. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development https://doi.org/10.1242/dev.199901 (2021).

Zhi, M. et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res. 32, 383–400 (2022).

Article  ADS  CAS  PubMed  Google Scholar 

Meek, S. et al. Stem cell-derived porcine macrophages as a new platform for studying host-pathogen interactions. BMC Biol. 20, 14 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, L. et al. Establishment of bovine expanded potential stem cells. Proc. Natl Acad. Sci. USA 118, e2018505118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brevini, T. A. et al. Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev. Rep. 6, 484–495 (2010).

Article  CAS  PubMed  Google Scholar 

Ezashi, T., Yuan, Y. & Roberts, R. M. Pluripotent stem cells from domesticated mammals. Annu. Rev. Anim. Biosci. 4, 223–253 (2016).

Article  CAS  PubMed  Google Scholar 

Haraguchi, S., Kikuchi, K., Nakai, M. & Tokunaga, T. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J. Reprod. Dev. 58, 707–716 (2012).

Article  CAS  PubMed  Google Scholar 

Hou, D. R. et al. Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci. Rep. 6, 25838 (2016).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kues, W. A. et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev. 22, 124–135 (2013).

Article  CAS  PubMed  Google Scholar 

Ma, Y., Yu, T., Cai, Y. & Wang, H. Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discov. 4, 21 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Park, J. K. et al. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS ONE 8, e52481 (2013).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Petkov, S., Hyttel, P. & Niemann, H. The small molecule inhibitors PD0325091 and CHIR99021 reduce expression of pluripotency-related genes in putative porcine induced pluripotent stem cells. Cell Reprogram. 16, 235–240 (2014).

Article  CAS  PubMed  Google Scholar 

Petkov, S., Glage, S., Nowak-Imialek, M. & Niemann, H. Long-term culture of porcine induced pluripotent stem-like cells under feeder-free conditions in the presence of histone deacetylase inhibitors. Stem Cells Dev. 25, 386–394 (2016).

Article  CAS  PubMed  Google Scholar 

Vassiliev, I. et al. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram. 12, 223–230 (2010).

Article  CAS  PubMed  Google Scholar 

Xue, B. et al. Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS ONE 11, e0151737 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Huang, S.-M. A. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

Article  ADS  CAS  PubMed  Google Scholar 

Yang, J., Ryan, D. J., Lan, G., Zou, X. & Liu, P. In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat. Protoc. 14, 350–378 (2019).

Article  CAS  PubMed  Google Scholar 

Wilkinson, A. C. et al. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Exp. Hematol. 76, 1–12. e15 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauer, B. K. et al. Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biol. Reprod. 83, 791–798 (2010).

Article  CAS  PubMed  Google Scholar 

Macháty, Z., Day, B. N. & Prather, R. S. Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455 (1998).

Article  PubMed  Google Scholar 

Pomar, F. J. et al. Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–2268 (2005).

Article  CAS  PubMed  Google Scholar 

Hao, Y. et al. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69, 501–507 (2003).

Article  CAS  PubMed  Google Scholar 

Kim, S. et al. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18, 93–101 (2010).

Article  CAS  PubMed  Google Scholar 

Siriboon, C. et al. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS ONE 10, e0118165 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Vassiliev, I. et al. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cell Reprogram. 13, 205–213 (2011).

Article  CAS  PubMed  Google Scholar 

Lai, S. et al. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE 11, e0146562 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gao, X., Ruan, D. & Liu, P. Reprogramming porcine fibroblast to EPSCs. Methods Mol. Biol. 2239, 199–211 (2021).

Article  CAS  PubMed  Google Scholar 

Marinho, L. S. R., Rissi, V. B., Lindquist, A. G., Seneda, M. M. & Bordignon, V. Acetylation and methylation profiles of H3K27 in porcine embryos cultured in vitro. Zygote 25, 575–582 (2017).

Article  CAS 

留言 (0)

沒有登入
gif