Bigger problems from smaller colonies: emergence of antibiotic-tolerant small colony variants of Mycobacterium avium complex in MAC-pulmonary disease patients

Koh WJ. Nontuberculous Mycobacteria-Overview. Microbiol Spectr. 2017;5(1). https://doi.org/10.1128/microbiolspec.TNMI7-0024-2016.

Honda JR, Virdi R, Chan ED. Global Environmental Nontuberculous Mycobacteria and their contemporaneous man-made and natural niches. Front Microbiol. 2018;9:2029. https://doi.org/10.3389/fmicb.2018.02029.

Article  PubMed  PubMed Central  Google Scholar 

Henkle E, Winthrop KL. Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med. 2015;36(1):91–9. https://doi.org/10.1016/j.ccm.2014.11.002.

Article  PubMed  Google Scholar 

Daley CL. Mycobacterium avium Complex Disease. Microbiol Spectr. 2017;5(2). https://doi.org/10.1128/microbiolspec.TNMI7-0045-2017.

Riccardi N, Monticelli J, Antonello RM, Luzzati R, Gabrielli M, Ferrarese M, et al. Mycobacterium chimaera infections: an update. J Infect Chemother. 2020;26(3):199–205. https://doi.org/10.1016/j.jiac.2019.11.004.

Article  PubMed  Google Scholar 

Boonjetsadaruhk W, Kaewprasert O, Nithichanon A, Ananta P, Chaimanee P, Salao K, et al. High rate of reinfection and possible transmission of Mycobacterium avium complex in Northeast Thailand. One Health. 2022;14:100374. https://doi.org/10.1016/j.onehlt.2022.100374.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle DP, Zembower TR, Qi C. Relapse versus Reinfection of Mycobacterium avium Complex Pulmonary Disease. Patient characteristics and Macrolide susceptibility. Ann Am Thorac Soc. 2016;13(11):1956–61. https://doi.org/10.1513/AnnalsATS.201605-344BC.

Article  PubMed  Google Scholar 

Kwon YS, Koh WJ, Daley CL. Treatment of Mycobacterium avium Complex Pulmonary Disease. Tuberc Respir Dis (Seoul). 2019;82(1):15–26. https://doi.org/10.4046/trd.2018.0060.

Article  PubMed  Google Scholar 

Jeong BH, Jeon K, Park HY, Kim SY, Lee KS, Huh HJ, et al. Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2015;191(1):96–103. https://doi.org/10.1164/rccm.201408-1545OC.

Article  CAS  PubMed  Google Scholar 

Koh WJ, Moon SM, Kim SY, Woo MA, Kim S, Jhun BW, et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J. 2017;50(3). https://doi.org/10.1183/13993003.02503-2016.

Kwak N, Park J, Kim E, Lee CH, Han SK, Yim JJ. Treatment outcomes of Mycobacterium avium Complex Lung Disease: a systematic review and Meta-analysis. Clin Infect Dis. 2017;65(7):1077–84. https://doi.org/10.1093/cid/cix517.

Article  CAS  PubMed  Google Scholar 

Jhun BW, Moon SM, Kim SY, Park HY, Jeon K, Kwon OJ, et al. Intermittent antibiotic therapy for recurrent nodular bronchiectatic Mycobacterium avium Complex Lung Disease. Antimicrob Agents Chemother. 2018;62(2). https://doi.org/10.1128/AAC.01812-17.

Kwon BS, Shim TS, Jo KW. The second recurrence of Mycobacterium avium complex lung disease after successful treatment for first recurrence. Eur Respir J. 2019;53(1). https://doi.org/10.1183/13993003.01038-2018.

Lee BY, Kim S, Hong Y, Lee SD, Kim WS, Kim DS, et al. Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2015;59(6):2972–7. https://doi.org/10.1128/AAC.04577-14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Besse A, Groleau MC, Deziel E. Emergence of small colony variants is an adaptive strategy used by Pseudomonas aeruginosa to mitigate the effects of Redox Imbalance. mSphere. 2023;8(2):e0005723. https://doi.org/10.1128/msphere.00057-23.

Article  PubMed  Google Scholar 

Besse A, Groleau MC, Trottier M, Vincent AT, Deziel E. Pseudomonas aeruginosa strains from both clinical and environmental origins readily adopt a stable small-colony-variant phenotype resulting from single mutations in c-di-GMP pathways. J Bacteriol. 2022;204(10):e0018522. https://doi.org/10.1128/jb.00185-22.

Article  CAS  PubMed  Google Scholar 

Bollar GE, Keith JD, Oden AM, Kiedrowski MR, Birket SE. Acute infection with a Tobramycin-Induced small colony variant of Staphylococcus aureus causes increased inflammation in the cystic fibrosis rat lung. Infect Immun. 2022;90(11):e0023722. https://doi.org/10.1128/iai.00237-22.

Article  CAS  PubMed  Google Scholar 

Fauerharmel-Nunes T, Flannagan RS, Goncheva MI, Bayer AS, Fowler VG Jr., Chan LC, et al. MRSA isolates from patients with persistent bacteremia Generate Nonstable small colony variants in Vitro within macrophages and endothelial cells during prolonged vancomycin exposure. Infect Immun. 2023;91(1):e0042322. https://doi.org/10.1128/iai.00423-22.

Article  CAS  PubMed  Google Scholar 

Liu S, Chen H, Chen J, Wang T, Tu S, Zhang X, et al. Transcriptome and proteome of Methicillin-Resistant Staphylococcus aureus small-colony variants reveal changed metabolism and increased Immune Evasion. Microbiol Spectr. 2023;11(2):e0189822. https://doi.org/10.1128/spectrum.01898-22.

Article  CAS  PubMed  Google Scholar 

Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006;4(4):295–305. https://doi.org/10.1038/nrmicro1384.

Article  CAS  PubMed  Google Scholar 

Kahl BC, Becker K, Loffler B. Clinical significance and Pathogenesis of Staphylococcal small colony variants in persistent infections. Clin Microbiol Rev. 2016;29(2):401–27. https://doi.org/10.1128/CMR.00069-15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Li Y, Wu Y, Cui Y, Liu Y, Shi X, et al. Phenotypic and genetic changes in the life cycle of small colony variants of Salmonella enterica serotype typhimurium induced by streptomycin. Ann Clin Microbiol Antimicrob. 2016;15(1):37. https://doi.org/10.1186/s12941-016-0151-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCarthy C. Spontaneous and Induced Mutation in Mycobacterium avium. Infect Immun. 1970;2(3):223–8. https://doi.org/10.1128/iai.2.3.223-228.1970.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Schaefer WB, Davis CL, Cohn ML. Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am Rev Respir Dis. 1970;102(4):499–506. https://doi.org/10.1164/arrd.1970.102.4.499.

Article  CAS  PubMed  Google Scholar 

Stormer RS, Falkinham JO 3. Differences in antimicrobial susceptibility of pigmented and unpigmented colonial variants of Mycobacterium avium. J Clin Microbiol. 1989;27(11):2459–65. https://doi.org/10.1128/jcm.27.11.2459-2465.1989.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MJ, Kim KM, Shin JI, Ha JH, Lee DH, Choi JG, et al. Identification of Nontuberculous Mycobacteria in patients with Pulmonary diseases in Gyeongnam, Korea, using multiplex PCR and Multigene Sequence-Based Analysis. Can J Infect Dis Med Microbiol. 2021;2021:8844306. https://doi.org/10.1155/2021/8844306.

Article  PubMed  PubMed Central  Google Scholar 

Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, et al. Susceptibility testing of Mycobacteria, Nocardiae, and other Aerobic actinomycetes. Wayne (PA); 2011.

Brown-Elliott BA, Woods GL. Antimycobacterial susceptibility testing of Nontuberculous Mycobacteria. J Clin Microbiol. 2019;57(10). https://doi.org/10.1128/JCM.00834-19.

Kwak N, Whang J, Yang JS, Kim TS, Kim SA, Yim JJ. Minimal inhibitory concentration of Clofazimine among Clinical isolates of Nontuberculous Mycobacteria and its impact on treatment outcome. Chest. 2021;159(2):517–23. https://doi.org/10.1016/j.chest.2020.07.040.

Article  CAS  PubMed  Google Scholar 

Ichikawa K, Yagi T, Inagaki T, Moriyama M, Nakagawa T, Uchiya KI, et al. Molecular typing of Mycobacterium intracellulare using multilocus variable-number of tandem-repeat analysis: identification of loci and analysis of clinical isolates. Microbiol (Reading). 2010;156(Pt 2):496–504. https://doi.org/10.1099/mic.0.030684-0.

Article  CAS  Google Scholar 

Inagaki T, Nishimori K, Yagi T, Ichikawa K, Moriyama M, Nakagawa T, et al. Comparison of a variable-number tandem-repeat (VNTR) method for typing Mycobacterium avium with mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing. J Clin Microbiol. 2009;47(7):2156–64. https://doi.org/10.1128/JCM.02373-08.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang FC, Frawley ER, Tapscott T, Vazquez-Torres A. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20(2):133–43. https://doi.org/10.1016/j.chom.2016.07.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reyes Ruiz LM, Williams CL, Tamayo R. Enhancing bacterial survival through phenotypic heterogeneity. PLoS Pathog. 2020;16(5):e1008439. https://doi.org/10.1371/journal.ppat.1008439.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weigel WA, Dersch P. Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect. 2018;20(9–10):570–7. https://doi.org/10.1016/j.micinf.2018.01.008.

Article  CAS  PubMed  Google Scholar 

Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453–64. https://doi.org/10.1038/nrmicro.2017.42.

Article  CAS  PubMed  Google Scholar 

Huemer M, Mairpady Shambat S, Bergada-Pijuan J, Soderholm S, Boumasmoud M, Vulin C, et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. Proc Natl Acad Sci U S A. 2021;118(7). https://doi.org/10.1073/pnas.2014920118.

Vulin C, Leimer N, Huemer M, Ackermann M, Zinkernagel AS. Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters. Nat Commun. 2018;9(1):4074. https://doi.org/10.1038/s41467-018-06527-0.

Article  ADS  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif