RNA editing enzymes: structure, biological functions and applications

Kim K, Shi AB, Kelley K, Chen XS. Unraveling the enzyme-substrate properties for APOBEC3A-Mediated RNA editing. J Mol Biol. 2023;435(17):168198.

Article  CAS  PubMed  Google Scholar 

Rosenthal JJC, Eisenberg E. Extensive recoding of the neural proteome in cephalopods by RNA editing. Annu Rev Anim Biosci. 2023;11:57–75.

Article  CAS  PubMed  Google Scholar 

Ruan H, Li Q, Liu Y, Liu Y, Lussier C, Diao L. GPEdit: the genetic and pharmacogenomic landscape of A-to-I RNA editing in cancers. Nucleic Acids Res. 2022;50(D1):D1231–7.

Article  CAS  PubMed  Google Scholar 

Hajji K, Sedmik J, Cherian A, Amoruso D, Keegan LP, O’Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA. 2022;28(10):1281–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406(6791):78–81.

Article  CAS  PubMed  ADS  Google Scholar 

Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379(6564):460–4.

Article  CAS  PubMed  ADS  Google Scholar 

Wu S, Xue Q, Yang M, Wang Y, Kim P, Zhou X, Huang L. Genetic control of RNA editing in neurodegenerative disease. Brief Bioinform. 2023;24(2).

Duan Y, Tang X, Lu J. Evolutionary driving forces of A-to-I editing in metazoans. Wiley Interdiscip Rev RNA. 2022;13(1):e1666.

Article  CAS  PubMed  Google Scholar 

Goldeck M, Gopal A, Jantsch MF, Mansouri Khosravi HR, Rajendra V, Vesely C. How RNA editing keeps an I on physiology. Am J Physiol Cell Physiol. 2022;323(5):C1496–511.

Article  CAS  PubMed  Google Scholar 

Teoh PJ, Koh MY, Chng WJ, ADARs. RNA editing and more in hematological malignancies. Leukemia. 2021;35(2):346–59.

Article  CAS  PubMed  Google Scholar 

Su AA, Randau L. A-to-I and C-to-U editing within transfer RNAs. Biochem (Mosc). 2011;76(8):932–7.

Article  CAS  Google Scholar 

Kliuchnikova AA, Kuznetsova KG, Moshkovskii SA. ADAR-mediated messenger RNA editing: analysis at the proteome level. Biochemistry (Moscow). Supplement Ser B: Biomedical Chem. 2017;11(1):32–42.

Google Scholar 

Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, et al. RNA editing: expanding the potential of RNA therapeutics. Mol Ther. 2023;31(6):1533–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Licht K, Kapoor U, Amman F, Picardi E, Martin D, Bajad P, Jantsch MF. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res. 2019;29(9):1453–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Picardi E, D’Erchia AM, Lo Giudice C, Pesole G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 2017;45(D1):D750–7.

Article  CAS  PubMed  Google Scholar 

Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science. 2009;324(5931):1210–3.

Article  CAS  PubMed  ADS  Google Scholar 

Gabay O, Shoshan Y, Kopel E, Ben-Zvi U, Mann TD, Bressler N, et al. Landscape of adenosine-to-inosine RNA recoding across human tissues. Nat Commun. 2022;13(1):1184.

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Wei Q, Han S, Yuan K, He Z, Chen Y, Xi X, et al. Transcriptome-wide profiling of A-to-I RNA editing by Slic-Seq. Nucleic Acids Res. 2023;51(16):e87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei ZY, Wang ZX, Li JH, Wen YS, Gao D, Xia SY, et al. Host A-to-I RNA editing signatures in intracellular bacterial and single-strand RNA viral infections. Front Immunol. 2023;14:1121096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics. 2023;24(1):685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhl S, Jang C, Frere JJ, Jordan TX, Simon AE. And tenOever BR. ADAR1 Biology can hinder effective antiviral RNA interference. J Virol. 2023;97(4):e0024523.

Article  PubMed  Google Scholar 

Rajendren S, Ye X, Dunker W, Richardson A, Karijolich J. The cellular and KSHV A-to-I RNA editome in primary effusion lymphoma and its role in the viral lifecycle. Nat Commun. 2023;14(1):1367.

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. Wiley Interdiscip Rev RNA. 2022;13(1):e1665.

Article  CAS  PubMed  Google Scholar 

Li Q, Gloudemans MJ, Geisinger JM, Fan B, Aguet F, Sun T, et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature. 2022;608(7923):569–77.

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Baker AR, Slack FJ. ADAR1 and its implications in cancer development and treatment. Trends Genet. 2022;38(8):821–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan J, Xu L, Bao HJ, Wang JL, Zhao Y, Chen S. Biological roles of A-to-I editing: implications in innate immunity, cell death, and cancer immunotherapy. J Exp Clin Cancer Res. 2023;42(1):149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu S, Fan Z, Kim P, Huang L, Zhou X. The integrative studies on the functional A-to-I RNA editing events in human cancers. Genomics Proteomics Bioinformatics. 2023;null.

Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer. 2023;9(7):528–42.

Article  CAS  PubMed  Google Scholar 

Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 2023;39(1):74–88.

Article  CAS  PubMed  Google Scholar 

Nakahama T, Kawahara Y. The RNA-editing enzyme ADAR1: a regulatory hub that tunes multiple dsRNA-sensing pathways. Int Immunol. 2023;35(3):123–33.

Article  CAS  PubMed  Google Scholar 

Wang X, Zhu L, Ying S, Liao X, Zheng J, Liu Z, et al. Increased RNA editing sites revealed as potential novel biomarkers for diagnosis in primary Sjogren’s syndrome. J Autoimmun. 2023;138:103035.

Article  CAS  PubMed  Google Scholar 

Vlachogiannis NI, Gatsiou A, Silvestris DA, Stamatelopoulos K, Tektonidou MG, Gallo A, et al. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmun. 2020;106:102329.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stok JE, Oosenbrug T, Ter Haar LR, Gravekamp D, Bromley CP, Zelenay S, et al. RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency. EMBO J. 2022;41(6):e109760.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vlachogiannis NI, Sachse M, Georgiopoulos G, Zormpas E, Bampatsias D, Delialis D, et al. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J Mol Cell Cardiol. 2021;160:111–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 2016;22(10):1140–50.

Article  CAS  PubMed  Google Scholar 

Garcia-Gonzalez C, Dieterich C, Maroli G, Wiesnet M, Wietelmann A, Li X, et al. ADAR1 prevents autoinflammatory processes in the heart mediated by IRF7. Circ Res. 2022;131(7):580–97.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif