Verification of CRISPR/Cas9 Activity In Vitro via SSA-Based Dual-Luciferase Reporter System

Durai S., Mani M., Kandavelou K., Wu J., Porteus M.H., Chandrasegaran S. 2005. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978‒5990.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186, 757‒761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong L., Ran F.A., Cox D., Lin S.L., Barretto R., Habib N., Hsu P.D., Wu X.B., Jiang W.Y., Marraffini L.A., Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819‒823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carroll D. 2014. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83, 409‒439.

Article  CAS  PubMed  Google Scholar 

Cathomen T., Joung J.K. 2008. Zinc-finger nucleases: The next generation emerges. Am. Soc. Gene Ther. 16, 1200‒1207.

Article  CAS  Google Scholar 

Pennisi E. 2012. The tale of the TALEs. Science. 338, 1408‒1411.

Article  CAS  PubMed  Google Scholar 

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816‒821.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. 2013. RNA-guided human genome engineering via Cas9. Science. 339, 823‒826.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang W.Y., Fu Y., Reyon D., Maeder M.L., Tsai S.Q., Sander J.D., Peterson R.T., Yeh J.R., Joung J.K. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227‒229.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gratz S.J., Cummings A.M., Nguyen J.N., Hamm D.C., Donohue L.K., Harrison M.M., Wildonger J., O’Connor-Giles K.M. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 194, 1029‒1035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S.W., Kim S., Kim J.M., Kim J.S. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230‒232.

Article  CAS  PubMed  Google Scholar 

Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153, 910‒918.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184‒191.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chuai G., Ma H., Yan J., Chen M., Hong N., Xue D., Zhou C., Zhu C., Chen K., Duan B., Gu F., Qu S., Huang D., Wei J., Liu Q. 2018. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80.

Article  PubMed  PubMed Central  Google Scholar 

Rahman M.K., Rahman M.S. 2017. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems. PLoS One. 12, e0181943.

Article  PubMed  PubMed Central  Google Scholar 

Smurnyy Y., Cai M., Wu H., McWhinnie E., Tallarico J.A., Yang Y., Feng Y. 2014. DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat. Chem. Biol. 10, 623‒625.

Article  CAS  PubMed  Google Scholar 

Liu X., Wang Y.S., Guo W.J., Chang B.H., Liu J., Guo Z.K., Quan F.S., Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat. Commun. 4, 2565.

Article  PubMed  Google Scholar 

Gross T., Jeney C., Halm D., Finkenzeller G., Stark G.B., Zengerle R., Koltay P., Zimmermann S. 2021. Characterization of CRISPR/Cas9 RANKL knockout mesenchymal stem cell clones based on single-cell printing technology and emulsion coupling assay as a low-cellularity workflow for single-cell cloning. PLoS One. 16, e0238330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sentmanat M.F., Peters S.T., Florian C.P., Connelly J.P., Pruett-Miller S.M. 2018. A survey of validation strategies for CRISPR-Cas9 editing. Sci. Rep. 8, 888.

Article  PubMed  PubMed Central  Google Scholar 

Lee J.M., Kim U., Yang H., Ryu B., Kim J., Sakuma T., Yamamoto T., Park J.H. 2021. TALEN-mediated generation of Nkx3.1 knockout rat model. Prostate. 81, 182‒193.

Article  CAS  PubMed  Google Scholar 

Jia C., Huai C., Ding J., Hu L., Su B., Chen H., Lu D. 2018. New applications of CRISPR/Cas9 system on mutant DNA detection. Gene. 641, 55‒62.

Article  CAS  PubMed  Google Scholar 

Kim H., Um E., Cho S.R., Jung C., Kim H., Kim J.S. 2011. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods. 8, 941‒943.

Article  CAS  PubMed  Google Scholar 

Mashal R.D., Koontz J., Sklar J. 1995. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 9, 177‒183.

Article  CAS  PubMed  Google Scholar 

He Z., Shi X., Liu M., Sun G., Proudfoot C., Whitelaw C.B., Lillico S.G., Chen Y. 2016. Comparison of surrogate reporter systems for enrichment of cells with mutations induced by genome editors. J. Biotechnol. 221, 49‒54.

Article  CAS  PubMed  Google Scholar 

Vouillot L., Thelie A., Pollet N. 2015. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda). 5, 407‒415.

Article  PubMed  PubMed Central  Google Scholar 

Labuhn M., Adams FF., Ng M., Knoess S., Schambach A., Charpentier E.M., Schwarzer A., Mateo J.L., Klusmann J.H., Heckl D. 2018. Refined sgRNA efficacy prediction improves large- and small-scale CRIS-PR-Cas9 applications. Nucleic Acids Res. 46, 1375‒1385.

Article  CAS  PubMed  Google Scholar 

Ren C., Xu K., Liu Z., Shen J., Han F., Chen Z., Zhang Z. 2015. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells. Cell. Mol. Life Sci. 72, 2763‒2772.

Article  CAS  PubMed  Google Scholar 

Yan N., Sun Y., Fang Y., Deng J., Mu L., Xu K., Mymryk J.S., Zhang Z. 2020. A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology-directed repair in mammalian cells. Mol. Ther. Nucleic Acids. 19, 775‒789.

Article  CAS  PubMed  Google Scholar 

Kim Y.H., Ramakrishna S., Kim H., Kim J.S. 2014. Enrichment of cells with TALEN-induced mutations using surrogate reporters. Methods. 69, 108‒117.

Article  CAS  PubMed  Google Scholar 

Mali P., Esvelt K.M., Church G.M. 2013. Cas9 as a versatile tool for engineering biology. Nat. Methods. 10, 957‒963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279‒284.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez E.E., Wang J.B., Miller J.C., Jouvenot Y., Kim K.A., Liu O., Wang N., Lee G., Bartsevich V.V., Lee Y.L., Guschin D.Y., Rupniewski I., Waite A.J., Carpenito C., Carroll R.G., Orange J.S., Urnov F.D., Rebar E.J., Ando D., Gregory P.D., Riley J.L., Holmes M.C., June C.H. 2008. Establishment of HIV-1 resistance in CD4(+) T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808‒816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim H.J., Lee H.J., Kim H., Cho S.W., Kim J.S. 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279‒1288.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H.J., Kim E., Kim J.S. 2010. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81‒89.

Article 

留言 (0)

沒有登入
gif