Application of Cadherin cRNA Probes in Brains of Alzheimer’s Disease Mouse Model

Iqbal K., Grundke-Iqbal I., Zaidi T., Merz P.A., Wen G.Y., Shaikh S.S., Wisniewski H.M., Alafuzoff I., Winblad B. 1986. Defective brain microtubule assembly in Alzheimer’s disease. Lancet. 2 (8504), 421‒426.

Article  CAS  PubMed  Google Scholar 

Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K., Tsuda T., Mar L., Foncin J.F., Bruni A.C., Montesi M.P., Sorbi S., Rainero I., Pinessi L., Nee L., Chumakov I., Pollen D., Brookes A., Sanseau P., Polinsky R.J., Wasco W., Da Silva H.A., Haines J.L., Perkicak-Vance M.A., Tanzi R.E., Roses A.D., Fraser P.E., Rommens J.M., St George-Hyslop P.H. 1995. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 375 (6534), 754‒760.

Article  CAS  PubMed  Google Scholar 

Bagyinszky E., Youn Y.C., An S.S.A., Kim S. 2016. Mutations, associated with early-onset Alzheimer’s disease, discovered in Asian countries. Clin. Int. Aging. 11, 1467‒1488.

Article  CAS  Google Scholar 

Unger M.S., Schernthaner P., Marschallinger J., Mrowetz H., Aigner L. 2018. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J. Neuroinflammation. 15 (1), 274.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiner M.W., Veitch D.P., Aisen P.S., Beckett L.A., Cairns N.J., Cedarbaum J., Green R.C., Harvey D., Jack C.R., Jagust W., Luthman J., Morris J.C., Petersen R.C., Saykin A.J., Shaw L., Shen L., Schwarz A., Toga A.W., Trojanowski J.Q., Alzheimer’s Disease Neuroimaging I. 2015. 2014 Update of the Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimers Demen. 11 (6), e1‒e120.

Google Scholar 

Widelitz R. 2005. Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors. 23 (2), 111‒116.

Article  CAS  PubMed  Google Scholar 

Giagtzoglou N., Ly C.V., Bellen H.J. 2009. Cell adhesion, the backbone of the synapse: “Vertebrate” and “invertebrate” perspectives. Cold Spring Harb. Perspect. Biol. 1 (4), a003079.

Article  PubMed  PubMed Central  Google Scholar 

Wegenast-Braun B.M., Maisch A.F., Eicke D., Radde R., Herzig M.C., Staufenbiel M., Jucker M., Calhoun M.E. 2009. Independent effects of intra- and extracellular a beta on learning-related gene expression. Am. J. Pathol. 175 (1), 271‒282.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melchior B., Garcia A.E., Hsiung B.K., Lo K.M., Doose J.M., Thrash J.C., Stalder A.K., Staufenbiel M., Neumann H., Carson M.J. 2010. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: Implications for vaccine-based therapies for Alzheimer’s disease. ASN Neuro. 2 (3), 157‒170.

Article  CAS  Google Scholar 

Lehmann S.M., Kruger C., Park B., Derkow K., Rosenberger K., Baumgart J., Trimbuch T., Eom G., Hinz M., Kaul D., Habbel P., Kalin R., Franzoni E., Rybak A., Nguyen D., Veh R., Ninnemann O., Peters O., Nitsch R., Heppner F.L., Golenbock D., Schott E., Ploegh H.L., Wulczyn F.G., Lehnardt S. 2012. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 15 (6), 827‒835.

Article  CAS  PubMed  Google Scholar 

Neve R.L., Valletta J.S., Li Y., Ventosa-Michelman M., Holtzman D.M., Mobley W.C. 1996. A comprehensive study of the spatiotemporal pattern of beta-amyloid precursor protein mRNA and protein in the rat brain: lack of modulation by exogenously applied nerve growth factor. Brain Res. Mol. Brain Res. 39 (1–2), 185‒197.

Article  CAS  PubMed  Google Scholar 

Aronov S., Aranda G., Behar L., Ginzburg I. 2001. Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J. Neurosci. 21 (17), 6577‒6587.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malmqvist T., Anthony K., Gallo J.M. 2014. Tau mRNA is present in axonal RNA granules and is associated with elongation factor 1A. Brain Res. 1584, 22‒27.

Article  CAS  PubMed  Google Scholar 

Page K., Hollister R., Tanzi R.E., Hyman B.T. 1996. In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain. Proc. Natl. Acad. Sci. U. S. A. 93 (24), 14020‒14024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irizarry M.C., Locascio J.J., Hyman B.T. 2001. β-Site APP cleaving enzyme mRNA expression in APP transgenic mice—anatomical overlap with transgene expression and static levels with aging. Am. J. Pathol. 158 (1), 173‒177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardue S., White C.L., 3rd, Bigio E.H., Morrison-Bogorad M. 1994. Anomalous binding of radiolabeled oligonucleotide probes to plaques and tangles in Alzheimer disease hippocampus. Mol. Chem. Neuropathol. 22 (1), 1‒24.

Article  CAS  PubMed  Google Scholar 

Ginsberg S.D., Crino P.B., Lee V.M., Eberwine J.H., Trojanowski J.Q. 1997. Sequestration of RNA in Alzheimer’s disease neurofibrillary tangles and senile plaques. Ann. Neurol. 41 (2), 200‒209.

Article  CAS  PubMed  Google Scholar 

Radde R., Bolmont T., Kaeser S.A., Coomaraswamy J., Lindau D., Stoltze L., Calhoun M.E., Jäggi F., Wolburg H., Gengler S., Haass C., Ghetti B., Czech C., Hölscher C., Mathews P.M., Jucker M. 2006. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7 (9), 940‒946.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redies C., Engelhart K., Takeichi M. 1993. Differential expression of N- and R-cadherin in functional neuronal systems and other structures of the developing chicken brain. J. Comp. Neurol. 333 (3), 398‒416.

Article  CAS  PubMed  Google Scholar 

Yamasaki A., Eimer S., Okochi M., Smialowska A., Kaether C., Baumeister R., Haass C., Steiner H. 2006. The GxGD motif of presenilin contributes to catalytic function and substrate identification of gamma-secretase. J. Neurosci. 26 (14), 3821‒3828.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcinkiewicz M. 2002. beta APP and furin mRNA concentrates in immature senile plaques in the brain of Alzheimer patients. J. Neuropathol. Exp. Neurol. 61 (9), 815‒829.

Article  CAS  PubMed  Google Scholar 

Gouras G.K., Almeida C.G., Takahashi R.H. 2005. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol. Aging. 26 (9), 1235‒1244.

Article  CAS  PubMed  Google Scholar 

Friedrich R.P., Tepper K., Roznicke R., Soom M., Westermann M., Reymann K., Kaether C., Fandrich M. 2010. Mechanism of amyloid plaque formation suggests an intracellular basis of A beta pathogenicity. Proc. Natl. Acad. Sci. U. S. A. 107 (5), 1942‒1947.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginsberg S.D., Crino P.B., Hemby S.E., Weingarten J.A., Lee V.M.Y., Eberwine J.H., Trojanowski J.Q. 1999. Predominance of neuronal m-RNAs in individual Alzheimer’s disease senile plaques. Ann. Neurol. 45 (2), 174‒181.

Article  CAS  PubMed  Google Scholar 

Ginsberg S.D., Alldred M.J., Che S.L. 2012. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol. Dis. 45 (1), 99‒107.

Article  CAS  PubMed  Google Scholar 

Uehara Y., Yamada T., Baba Y., Miura S.I., Abe S., Kitajima K., Higuchi M.A., Iwamoto T., Saku K. 2008. ATP-binding cassette transporter G4 is highly expressed in microglia in Alzheimer’s brain. Brain Res. 1217, 239‒246.

Article  CAS  PubMed  Google Scholar 

Westmark C.J., Malter J.S. 2007. FMRP mediates mGluR(5)-dependent translation of amyloid precursor protein. Plos Biol. 5 (3), 629‒639.

Article  CAS  Google Scholar 

Rogers J.T., Bush A.I., Cho H.H., Smith D.H., Thomson A.M., Friedlich A.L., Lahiri D.K., Leedman P.J., Huang X.D., Cahill C.M. 2008. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem. Soc. Transact. 36, 1282‒1287.

Article  CAS  Google Scholar 

Dona F., Houseley J. 2014. Unexpected DNA loss mediated by the DNA binding activity of ribonuclease A. PLoS One. 9 (12), e115008.

Article  PubMed  PubMed Central  Google Scholar 

Chartrand P., Bertrand E., Singer R.H., Long R.M. 2000. Sensitive and high-resolution detection of RNA in situ. In RNA-Ligand Interactions, Part B: Molecular Biology Methods. Celander D.W., Abelson J.N., Eds. Methods Enzymol. 318, 493‒506.

King O.D., Gitler A.D., Shorter J. 2012. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61‒80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathura V.S., Paris D., Ait-Ghezala G., Quadros A., Patel N.S., Kolippakkam D.N., Volmar C.H., Mullan M.J. 2005. Model of Alzheimer’s disease amyloid-beta peptide based on a RNA binding protein. Biochem. Biophys.Res. Commun. 332 (2), 585‒592.

Article  CAS  PubMed  Google Scholar 

Chen J.W., Newhall J., Xie Z.R., Leckband D., Wu Y.H. 2016. A computational model for kinetic studies of cadherin binding and clustering. Biophys. J. 111 (7), 1507‒1518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mills F., Globa A.K., Liu S., Cowan C.M., Mobasser M., Phillips A.G., Borgland S.L., Bamji S.X. 2017. Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nat. Neurosci. 20 (4), 540‒549.

留言 (0)

沒有登入
gif