Rapamycin Regulates Lipopolysaccharide-Induced Microglial Phagocytosis In Vitro

Stence N., Waite M., Dailey M.E. 2001. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia. 33, 256‒266.

Article  CAS  PubMed  Google Scholar 

Eugenin E.A., Eckardt D., Theis M., Willecke K., Bennett M.V., Saez J.C. 2001. Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc. Natl. Acad. Sci. U. S. A. 98, 4190‒4195. https://doi.org/10.1073/pnas.051634298

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green D.R., Oguin T.H., Martinez J. 2016. The clearance of dying cells: table for two. Cell Death Differ. 23, 915‒926. https://doi.org/10.1038/cdd.2015.172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolf S.A., Boddeke H.W., Kettenmann H. 2017. Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619‒643. https://doi.org/10.1146/annurev-physiol-022516-034406

Article  CAS  PubMed  Google Scholar 

Lucin K.M., O’Brien C.E., Bieri G., Czirr E., Mosher K.I., Abbey R.J., Mastroeni D.F., Rogers J., Spencer B., Masliah E., Wyss-Coray T. 2013. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron. 79, 873‒886. https://doi.org/10.1016/j.neuron.2013.06.046

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krasemann S., Madore C., Cialic R., Baufeld C., Calcagno N., El Fatimy R., Beckers L., O’Loughlin E., Xu Y., Fanek Z., Greco D.J., Smith S.T., Tweet G., Humulock Z., Zrzavy T., Conde-Sanroman P., Gacias M., Weng Z., Chen H., Tjon E., Mazaheri F., Hartmann K., Madi A., Ulrich J.D., Glatzel M., Worthmann A., Heeren J., Budnik B., Lemere C., Ikezu T., Heppner F.L., Litvak V., Holtzman D.M., Lassmann H., Weiner H.L., Ochando J., Haass C., Butovsky O. 2017. The TREM2-APOE Pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 47, 566‒581.e9. https://doi.org/10.1016/j.immuni.2017.08.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sierra A., Abiega O., Shahraz A., Neumann H. 2013. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front. Cell Neurosci. 7, 6. https://doi.org/10.3389/fncel.2013.00006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi K., Rochford C.D., Neumann H. 2005. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647‒657. https://doi.org/10.1084/jem.20041611

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siddiqui T.A., Lively S., Schlichter L.C. 2016. Complex molecular and functional outcomes of single versus sequential cytokine stimulation of rat microglia. J. Neuroinflammation. 13, 66. https://doi.org/10.1186/s12974-016-0531-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janda E., Boi L., Carta A.R. 2018. Microglial phagocytosis and its regulation: a therapeutic target in Parkinson’s disease? Front Mol. Neurosci. 11, 144. https://doi.org/10.3389/fnmol.2018.00144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heckmann B.L., Boada-Romero E., Cunha L.D., Magne J., Green D.R. 2017. LC3-associated phagocytosis and inflammation. J. Mol. Biol. 429, 3561‒3576. https://doi.org/10.1016/j.jmb.2017.08.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romao S., Münz C. 2014. LC3-associated phagocytosis. Autophagy. 10, 526‒528. https://doi.org/10.4161/auto.27606

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heckmann B.L., Teubner B.J.W., Tummers B., Boada-Romero E., Harris L., Yang M., Guy C.S., Zakharenko S.S., Green D.R. 2019. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell. 178, 536‒551.e14. https://doi.org/10.1016/j.cell.2019.05.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu M., Zheng X., Cheng F., Shao B., Zhuge Q., Jin K. 2022. Metformin, rapamycin, or nicotinamide mononucleotide pretreatment attenuate cognitive impairment after cerebral hypoperfusion by inhibiting microglial phagocytosis. Front Neurol. 13, 903565. https://doi.org/10.3389/fneur.2022.903565

Article  PubMed  PubMed Central  Google Scholar 

Beccari S., Sierra-Torre V., Valero J., Pereira-Iglesias M., García-Zaballa M., Soria F.N., De Las Heras-Garcia L., Carretero-Guillen A., Capetillo-Zarate E., Domercq M., Huguet P.R., Ramonet D., Osman A., Han W., Dominguez C., Faust T.E., Touzani O., Pampliega O., Boya P., Schafer D., Mariño G., Canet-Soulas E., Blomgren K., Plaza-Zabala A., Sierra A. 2023. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy. 19(7), 1952‒1981. https://doi.org/10.1080/15548627.2023.2165313

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian H., Roy E., Zheng H. 2016. Protocol for primary microglial culture preparation. BioProtoc. 6. https://doi.org/10.21769/BioProtoc.1989

Heckmann B.L., Green D.R. 2019. LC3-associated phagocytosis at a glance. J. Cell Sci. 132. https://doi.org/10.1242/jcs.222984

Martinez J., Almendinger J., Oberst A., Ness R., Dillon C.P., Fitzgerald P., Hengartner M.O., Green D.R. 2011. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. U. S. A. 108, 17396‒17401. https://doi.org/10.1073/pnas.1113421108

Article  PubMed  PubMed Central  Google Scholar 

Martinez J., Cunha L.D., Park S., Yang M., Lu Q., Orchard R., Li Q.Z., Yan M., Janke L., Guy C., Linkermann A., Virgin H.W., Green D.R. 2016. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 533, 115‒119. https://doi.org/10.1038/nature17950

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanjuan M.A., Dillon C.P., Tait S.W., Moshiach S., Dorsey F., Connell S., Komatsu M., Tanaka K., Cleveland J.L., Withoff S., Green D.R. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 450, 1253‒1257. https://doi.org/10.1038/nature06421

Article  CAS  PubMed  Google Scholar 

Segawa K., Nagata S. 2015. An apoptotic 'Eat Me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639‒650. https://doi.org/10.1016/j.tcb.2015.08.003

Article  CAS  PubMed  Google Scholar 

Kyrmizi I., Gresnigt M.S., Akoumianaki T., Samonis G., Sidiropoulos P., Boumpas D., Netea M.G., van de Veerdonk F.L., Kontoyian-nis D.P., Chamilos G. 2013. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 191, 1287‒1299. https://doi.org/10.4049/jimmunol.1300132

Article  CAS  PubMed  Google Scholar 

Han H.E., Kim T.K., Son H.J., Park W.J., Han P.L. 2013. Activation of autophagy pathway suppresses the expression of iNOS, IL6 and cell death of LPS-stimulated microglia cells. Biomol. Ther. (Seoul). 21, 21‒28. https://doi.org/10.4062/biomolther.2012.089

Article  CAS  PubMed  Google Scholar 

Liu X., Zhang W., Xu Y., Xu X., Jiang Q., Ruan J., Wu Y., Zhou Y., Saw P.E., Luo B. 2022. Targeting PI3Kgamma/AKT pathway remodels LC3-associated phagocytosis induced immunosuppression after radiofrequency ablation. Adv. Sci. (Weinh). 9, e2102182. https://doi.org/10.1002/advs.202102182

Article  CAS  PubMed  Google Scholar 

Asare P.F., Roscioli E., Hurtado P.R., Tran H.B., Mah C.Y., Hodge S. 2020. LC3-Associated Phagocytosis (LAP): a potentially influential mediator of efferocytosis-related tumor progression and aggressiveness. Front. Oncol. 10, 1298. https://doi.org/10.3389/fonc.2020.01298

Article  PubMed  PubMed Central  Google Scholar 

Lin D.S., Huang Y.W., Lee T.H., Chang L., Huang Z.D., Wu T.Y., Wang T.J., Ho C.S. 2023. Rapamycin alleviates protein aggregates, reduces neuroinflammation, and rescues demyelination in globoid cell leukodystrophy. Cells. 12. https://doi.org/10.3390/cells12070993

Mengke N.S., Hu B., Han Q.P., Deng Y.Y., Fang M., Xie D., Li A., Zeng H.K. 2016. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Mol. Med. Rep. 14, 4957‒4966. https://doi.org/10.3892/mmr.2016.5883

Article  CAS  PubMed  PubMed Central  Google Scholar 

Towner R.A., Gulej R., Zalles M., Saunders D., Smith N., Lerner M., Morton K.A., Richardson A. 2021. Rapamycin restores brain vasculature, metabolism, and blood-brain barrier in an inflammaging model. Geroscience. 43, 563‒578. https://doi.org/10.1007/s11357-021-00363-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakoh-Nakatogawa M., Matoba K., Asai E., Kirisako H., Ishii J., Noda N.N., Inagaki F., Nakatogawa H., Ohsumi Y. 2013. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20, 433‒439. https://doi.org/10.1038/nsmb.2527

Article  CAS  PubMed  Google Scholar 

Nakatogawa H. 2013. Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55, 39‒50. https://doi.org/10.1042/bse0550039

Article  CAS  PubMed  Google Scholar 

Fernandez A.F., Lopez-Otin C. 2015. The functional and pathologic relevance of autophagy proteases. J. Clin. Invest. 125, 33‒41. https://doi.org/10.1172/JCI73940

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif