The NADase CD38 is a central regulator in gouty inflammation and a novel druggable therapeutic target

Terkeltaub R. What makes gouty inflammation so variable? BMC Med. 2017;15:158.

Article  PubMed  PubMed Central  Google Scholar 

Pourcet B, Duez H. Circadian control of inflammasome pathways: implications for circadian medicine. Front Immunol. 2020;11:1630.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Zhu L, Liu M, Zhao L, Yu Y, Xue Y, et al. Recent insights into the role of macrophages in acute gout. Front Immunol. 2022;13: 955806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cipolletta E, Tata LJ, Nakafero G, Avery AJ, Mamas MA, Abhishek A. Association between gout flare and subsequent cardiovascular events among patients with gout. JAMA. 2022;328:440–50.

Article  PubMed  PubMed Central  Google Scholar 

Martin WJ, Walton M, Harper J. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum. 2009;60:281–9.

Article  PubMed  Google Scholar 

Busso N, So A. Mechanisms of inflammation in gout. Arthritis Res Ther. 2010;12:206.

Article  PubMed  PubMed Central  Google Scholar 

Cronstein BN, Sunkureddi P. Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J Clin Rheumatol. 2013;19:19–29.

Article  PubMed  PubMed Central  Google Scholar 

Galozzi P, Bindoli S, Doria A, Oliviero F, Sfriso P. Autoinflammatory features in gouty arthritis. J Clin Med. 2021;10:1880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD (+) metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22:119–41.

Article  CAS  PubMed  Google Scholar 

Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, et al. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol. 2022;322:C521–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, et al. An Acetylation switch of the nlrp3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020;31:580-591.e5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim DW, Cho HJ, Hwang I, Jung TY, Kim HS, Ryu JH, et al. Intracellular NAD+ depletion confers a priming signal for NLRP3 inflammasome activation. Front Immunol. 2021;12: 765477.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun. 2006;345:1386–92.

Article  CAS  PubMed  Google Scholar 

Piedra-Quintero ZL, Wilson Z, Nava P, Guerau-de-Arellano M. CD38: an immunomodulatory molecule in inflammation and autoimmunity. Front Immunol. 2020;30(11): 597959.

Article  Google Scholar 

Li W, Li Y, Jin X, Liao Q, Chen Z, Peng H, et al. CD38: a significant regulator of macrophage function. Front Oncol. 2022;12: 775649.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amici SA, Young NA, Narvaez-Miranda J, Jablonski KA, Arcos J, Rosas L, et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions. Front Immunol. 2018;9:1593.

Article  PubMed  PubMed Central  Google Scholar 

Wen S, Arakawa H, Tamai I. CD38 activation by monosodium urate crystals contributes to inflammatory responses in human and murine macrophages. Biochem Biophys Res Commun. 2021;581:6–11.

Article  CAS  PubMed  Google Scholar 

Liu L, Zhu X, Zhao T, Yu Y, Xue Y, Zou H. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology (Oxford). 2019;58:1674–83.

Article  CAS  PubMed  Google Scholar 

Wang J, Chen G, Lu L, Zou H. Sirt1 inhibits gouty arthritis via activating PPARγ. Clin Rheumatol. 2019;38:3235–42.

Article  PubMed  Google Scholar 

Edwards JC, Sedgwick AD, Willoughby DA. The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system. J Pathol. 1981;134:147–56.

Article  CAS  PubMed  Google Scholar 

Pessler F, Mayer CT, Jung SM, Behrens EM, Dai L, Menetski JP, Schumacher HR. Identification of novel monosodium urate crystal regulated mRNAs by transcript profiling of dissected murine air pouch membranes. Arthritis Res Ther. 2008;10:R64.

Article  PubMed  PubMed Central  Google Scholar 

Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes. 2016;9:145–53.

CAS  PubMed  PubMed Central  Google Scholar 

Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab. 2021;49: 101195.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62:1084–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tschopp J. Mitochondria: sovereign of inflammation? Eur J Immunol. 2011;41:1196–202.

Article  CAS  PubMed  Google Scholar 

Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR, et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY). 2011;3:102–7.

Article  CAS  PubMed  Google Scholar 

Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28:1717-1728.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou B, Wang DD, Qiu Y, Airhart S, Liu Y, Stempien-Otero A, et al. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest. 2020;130:6054–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu J, Singh K, Lin A, Meadows AM, Wu K, Shing V, et al. Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes. J Clin Invest. 2022;132: e139828.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–91.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Xu HN, Li S Jr, AD, Chellappa K, Davis JG, et al. Rapamycin maintains NAD+/NADH redox homeostasis in muscle cells. Aging (Albany NY). 2020;12:17786–99.

Article  CAS  PubMed  Google Scholar 

Teodoro JS, Rolo AP, Palmeira CM. The NAD ratio redox paradox: why does too much reductive power cause oxidative stress? Toxicol Mech Methods. 2013;23:297–302.

Article  CAS  PubMed  Google Scholar 

Srivastava S. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med. 2016;5(1):25.

Article  PubMed  PubMed Central  Google Scholar 

Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14:454–60.

Article  CAS  PubMed  Google Scholar 

Traba J, Geiger SS, Kwarteng-Siaw M, Han K, Ra OH, Siegel RM, et al. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J Biol Chem. 2017;292:12153–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng J, Shi L, Liang F, Xu W, Li T, Gao L, et al. Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats. Front Neurosci. 2018;12:414.

留言 (0)

沒有登入
gif