MRE11A: a novel negative regulator of human DNA mismatch repair

Liu D, Keijzers G, Rasmussen LJ. DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res Rev Mutat Res. 2017;773:174–87. https://doi.org/10.1016/j.mrrev.2017.07.001.

Article  CAS  PubMed  Google Scholar 

Fishel R. Mismatch repair. J Biol Chem. 2015;290:26395–403. https://doi.org/10.1074/jbc.R115.660142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stelloo E, Jansen AML, Osse EM, Nout RA, Creutzberg CL, Ruano D, et al. Practical guidance for mismatch repair-deficiency testing in endometrial cancer. Ann Oncol. 2016;28:96–102. https://doi.org/10.1093/annonc/mdw542.

Article  Google Scholar 

Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP. Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer. 2015;15:181–94. https://doi.org/10.1038/nrc3878.

Article  CAS  PubMed  Google Scholar 

Baretti M, Le DT. DNA mismatch repair in cancer. Pharmacol Ther. 2018;189:45–62. https://doi.org/10.1016/j.pharmthera.2018.04.004.

Article  CAS  PubMed  Google Scholar 

Leelatian N, Hong CS, Bindra RS. The role of mismatch repair in glioblastoma multiforme treatment response and resistance. Neurosurg Clin N Am. 2021;32:171–80. https://doi.org/10.1016/j.nec.2020.12.009.

Article  PubMed  Google Scholar 

Battaglin F, Naseem M, Lenz HJ, Salem ME. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin Adv Hematol Oncol. 2018;16:735–45.

PubMed  PubMed Central  Google Scholar 

Pors K, Patterson LH. DNA mismatch repair deficiency, resistance to cancer chemotherapy and the development of hypersensitive agents. Curr Top Med Chem. 2005;5:1133–49. https://doi.org/10.2174/156802605774370883.

Article  CAS  PubMed  Google Scholar 

Irving JA, Hall AG. Mismatch repair defects as a cause of resistance to cytotoxic drugs. Expert Rev Anticancer Ther. 2002;1:149–58. https://doi.org/10.1586/14737140.1.1.149.

Article  Google Scholar 

Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front Oncol. 2019;9:396. https://doi.org/10.3389/fonc.2019.00396.

Article  PubMed  PubMed Central  Google Scholar 

Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 2021;226: 108707. https://doi.org/10.1016/j.clim.2021.108707.

Article  CAS  PubMed  Google Scholar 

Nebot-Bral L, Coutzac C, Kannouche PL, Chaput N. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bull Cancer. 2019;106:105–13. https://doi.org/10.1016/j.bulcan.2018.08.007.

Article  PubMed  Google Scholar 

Pena-Diaz J, Rasmussen LJ. Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair (Amst). 2016;38:147–54. https://doi.org/10.1016/j.dnarep.2015.11.022.

Article  CAS  PubMed  Google Scholar 

Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn. 2008;10:293–300. https://doi.org/10.2353/jmoldx.2008.080031.

Article  PubMed  PubMed Central  Google Scholar 

Szankasi P, Smith GR. A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science. 1995;267:1166–9. https://doi.org/10.1126/science.7855597.

Article  ADS  CAS  PubMed  Google Scholar 

Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 2003;17:603–14. https://doi.org/10.1101/gad.1060603.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jagmohan-Changur S, Poikonen T, Vilkki S, Launonen V, Wikman F, Orntoft TF, et al. EXO1 variants occur commonly in normal population: evidence against a role in hereditary nonpolyposis colorectal cancer. Cancer Res. 2003;63:154–8.

CAS  PubMed  Google Scholar 

Song P, Liu S, Liu D, Keijzers G, Bakula D, Duan S, et al. CNOT6: a novel regulator of DNA mismatch repair. Cells. 2022. https://doi.org/10.3390/cells11030521.

Article  PubMed  PubMed Central  Google Scholar 

Stingele J, Bellelli R, Boulton SJ. Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol. 2017;18:563–73. https://doi.org/10.1038/nrm.2017.56.

Article  CAS  PubMed  Google Scholar 

Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA, et al. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem. 2003;278:20303–12. https://doi.org/10.1074/jbc.M300198200.

Article  CAS  PubMed  Google Scholar 

Kramara J, Osia B, Malkova A. Break-induced replication: the where, the why, and the how. Trends Genet. 2018;34:518–31. https://doi.org/10.1016/j.tig.2018.04.002.

Article  CAS  PubMed  Google Scholar 

Mirzoeva OK, Kawaguchi T, Pieper RO. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Mol Cancer Ther. 2006;5:2757–66. https://doi.org/10.1158/1535-7163.MCT-06-0183.

Article  CAS  PubMed  Google Scholar 

Zhao N, Zhu F, Yuan F, Haick AK, Fukushige S, Gu L, et al. The interplay between hMLH1 and hMRE11: role in MMR and the effect of hMLH1 mutations. Biochem Biophys Res Commun. 2008;370:338–43. https://doi.org/10.1016/j.bbrc.2008.03.082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vo AT, Zhu F, Wu X, Yuan F, Gao Y, Gu L, et al. hMRE11 deficiency leads to microsatellite instability and defective DNA mismatch repair. EMBO Rep. 2005;6:438–44. https://doi.org/10.1038/sj.embor.7400392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giannini G, Ristori E, Cerignoli F, Rinaldi C, Zani M, Viel A, et al. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep. 2002;3:248–54. https://doi.org/10.1093/embo-reports/kvf044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franchitto A, Pichierri P, Piergentili R, Crescenzi M, Bignami M, Palitti F. The mammalian mismatch repair protein MSH2 is required for correct MRE11 and RAD51 relocalization and for efficient cell cycle arrest induced by ionizing radiation in G2 phase. Oncogene. 2003;22:2110–20. https://doi.org/10.1038/sj.onc.1206254.

Article  CAS  PubMed  Google Scholar 

Wen Q, Scorah J, Phear G, Rodgers G, Rodgers S, Meuth M. A mutant allele of MRE11 found in mismatch repair-deficient tumor cells suppresses the cellular response to DNA replication fork stress in a dominant negative manner. Mol Biol Cell. 2008;19:1693–705. https://doi.org/10.1091/mbc.E07-09-0975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ham MF, Takakuwa T, Luo WJ, Liu A, Horii A, Aozasa K. Impairment of double-strand breaks repair and aberrant splicing of ATM and MRE11 in leukemia-lymphoma cell lines with microsatellite instability. Cancer Sci. 2006;97:226–34. https://doi.org/10.1111/j.1349-7006.2006.00165.x.

Article  CAS  PubMed  Google Scholar 

Gaymes TJ, Mohamedali AM, Patterson M, Matto N, Smith A, Kulasekararaj A, et al. Microsatellite instability induced mutations in DNA repair genes CtIP and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase inhibitors in myeloid malignancies. Haematologica. 2013;98:1397–406. https://doi.org/10.3324/haematol.2012.079251.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai A, Gerson S. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases. DNA Repair. 2014;21:55–64. https://doi.org/10.1016/j.dnarep.2014.06.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou B, Huang C, Yang J, Lu J, Dong Q, Sun LZ. Preparation of heteroduplex enhanced green fluorescent protein plasmid for in vivo mismatch repair activity assay. Anal Biochem. 2009;388:167–9. https://doi.org/10.1016/j.ab.2009.02.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mojas N, Lopes M, Jiricny J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev. 2007;21:3342–55. https://doi.org/10.1101/gad.455407.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quiros S, Roos WP, Kaina B. Processing of O6-methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle. 2009;9:168–78. https://doi.org/10.4161/cc.9.1.10363.

Article 

留言 (0)

沒有登入
gif