Pyruvate Kinase M2 Nuclear Translocation Regulate Ferroptosis-Associated Acute Lung Injury in Cytokine Storm

Jose, R.J., and A. Manuel. 2020. COVID-19 cytokine storm: The interplay between inflammation and coagulation. The Lancet Respiratory Medicine 8: e46–e47.

Article  CAS  PubMed  Google Scholar 

Karki, R., B.R. Sharma, S. Tuladhar, et al. 2021. Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184 (149–168): e117.

Google Scholar 

Mehta, P., D.F. McAuley, M. Brown, et al. 2020. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395: 1033–1034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chousterman, B.G., F.K. Swirski, and G.F. Weber. 2017. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 39: 517–528.

Article  CAS  PubMed  Google Scholar 

Behrens, E.M., S.W. Canna, K. Slade, et al. 2011. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. The Journal of Clinical Investigation 121: 2264–2277.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, A., S.D. Pope, J.S. Weinstein, et al. 2019. Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proceedings of the National Academy of Sciences of the USA 116: 2200–2209.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Merad, M., and J.C. Martin. 2020. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nature Reviews Immunology 20: 355–362.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucas, C., P. Wong, J. Klein, et al. 2020. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584: 463–469.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, W., M. Li, G. Luo, et al. 2021. The inflammatory factors associated with disease severity to predict COVID-19 progression. The Journal of Immunology 206: 1597–1608.

Article  CAS  PubMed  Google Scholar 

Qiu, P., X. Cui, J. Sun, et al. 2013. Antitumor necrosis factor therapy is associated with improved survival in clinical sepsis trials: A meta-analysis. Critical Care Medicine 41: 2419–2429.

Article  CAS  PubMed  Google Scholar 

Li, J., F. Cao, H.L. Yin, et al. 2020. Ferroptosis: Past, present and future. Cell Death & Disease 11: 88.

Article  Google Scholar 

Mou, Y., J. Wang, J. Wu, et al. 2019. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. Journal of Hematology & Oncology 12: 34.

Article  Google Scholar 

Fang, X., H. Wang, D. Han, et al. 2019. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences of the USA 116: 2672–2680.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, H., A. Santo, Z. Jia, et al. 2019. GPx4 in bacterial infection and polymicrobial sepsis: Involvement of ferroptosis and pyroptosis. React Oxyg Species (Apex) 7: 154–160.

CAS  PubMed  Google Scholar 

Tschopp, J., and K. Schroder. 2010. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nature Reviews Immunology 10: 210–215.

Article  CAS  PubMed  Google Scholar 

Tadokoro, T., M. Ikeda, T. Ide, et al. 2020. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5(9): e132747. 

Gozzelino, R., and M.P. Soares. 2014. Coupling heme and iron metabolism via ferritin H chain. Antioxidants & Redox Signaling 20: 1754–1769.

Article  CAS  Google Scholar 

Zou, Y., W.S. Henry, E.L. Ricq, et al. 2020. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585: 603–608.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gao, M., P. Monian, N. Quadri, et al. 2015. Glutaminolysis and transferrin regulate ferroptosis. Molecular Cell 59: 298–308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H., F. Zandkarimi, Y. Zhang, et al. 2020. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nature Cell Biology 22: 225–234.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, C., X. Dong, W. Du, et al. 2020. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduction and Targeted Therapy 5: 187.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X., S. Lu, C. He, et al. 2019. RSL3 induced autophagic death in glioma cells via causing glycolysis dysfunction. Biochemical and Biophysical Research Communications 518: 590–597.

Article  CAS  PubMed  Google Scholar 

Palsson-McDermott, E.M., A.M. Curtis, G. Goel, et al. 2015. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metabolism 21: 65–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, W., H. Hu, R. Chang, et al. 2011. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145: 732–744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, H.L., R. Zhang, P. Anand, et al. 2019. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565: 96–100.

Article  ADS  CAS  PubMed  Google Scholar 

Shirai, T., R.R. Nazarewicz, B.B. Wallis, et al. 2016. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine 213: 337–354.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, H., P. An, E. Xie, et al. 2017. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66: 449–465.

Article  CAS  PubMed  Google Scholar 

Dixon, S.J., K.M. Lemberg, M.R. Lamprecht, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149: 1060–1072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miotto, G., M. Rossetto, M.L. Di Paolo, et al. 2020. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biology 28: 101328.

Article  CAS  PubMed  Google Scholar 

Li, T., J. Han, L. Jia, et al. 2019. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation. Protein & Cell 10: 583–594.

Article  CAS  Google Scholar 

Das Gupta, K., M.R. Shakespear, J.E.B. Curson, et al. 2020. Class IIa histone deacetylases drive toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2. Cell Reports 30 (2712–2728): e2718.

Google Scholar 

Xie, M., Y. Yu, R. Kang, et al. 2016. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nature Communications 7: 13280.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Evren, E., E. Ringqvist, K.P. Tripathi, et al. 2021. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 54 (259–275): e257.

Google Scholar 

Caricchio, R., M. Gallucci, C. Dass, et al. 2021. Preliminary predictive criteria for COVID-19 cytokine storm. Annals of the Rheumatic Diseases 80: 88–95.

Article  CAS  PubMed  Google Scholar 

He, R., B. Liu, R. Xiong, et al. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discovery 8: 43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y., Y. Wang, L. Guo, et al. 2022. Interaction between macrophages and ferroptosis. Cell Death & Disease 13: 355.

Article  CAS  Google Scholar 

Wang, Y., M. Zhang, R. Bi, et al. 2022. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biology 51: 102262.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Z., Y. Le, H. Chen, et al. 2021. Role of PKM2-mediated immunometabolic reprogramming on development of cytokine storm. Frontiers in Immunology 12: 748573.

Article  CAS 

留言 (0)

沒有登入
gif