Investigation of Metabolic and Inflammatory Disorder in the Aging FGF21 Knockout Mouse

Johnstone, S.E., V.N. Gladyshev, M.J. Aryee, and B.E. Bernstein. 2022. Epigenetic clocks, aging, and cancer. Science 378 (6626): 1276–1277. https://doi.org/10.1126/science.abn4009.

Article  CAS  PubMed  Google Scholar 

Melzer, D., L.C. Pilling, and L. Ferrucci. 2020. The genetics of human ageing. Nature Reviews Genetics 21 (2): 88–101. https://doi.org/10.1038/s41576-019-0183-6.

Article  CAS  PubMed  Google Scholar 

Mora, F. 2013. Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues in Clinical Neuroscience 15 (1): 45–52. https://doi.org/10.31887/DCNS.2013.15.1/fmora.

Article  PubMed  PubMed Central  Google Scholar 

Franceschi, C., P. Garagnani, P. Parini, C. Giuliani, and A. Santoro. 2018. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nature Reviews. Endocrinology 14 (10): 576–590. https://doi.org/10.1038/s41574-018-0059-4.

Article  CAS  PubMed  Google Scholar 

Salazar, N., S. Arboleya, L. Valdes, C. Stanton, P. Ross, L. Ruiz, M. Gueimonde, and C.G. de Los Reyes-Gavilan. 2014. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Frontiers in Genetics 5: 406. https://doi.org/10.3389/fgene.2014.00406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larbi, A., C. Franceschi, D. Mazzatti, R. Solana, A. Wikby, and G. Pawelec. 2008. Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda, Md.) 23: 64–74. https://doi.org/10.1152/physiol.00040.2007.

Article  CAS  PubMed  Google Scholar 

Rodier, F., and J. Campisi. 2011. Four faces of cellular senescence. Journal of Cell Biology 192 (4): 547–556. https://doi.org/10.1083/jcb.201009094.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang, H., P. Tantiwong, A. Sriwijitkamol, K. Shanmugasundaram, S. Mohan, S. Espinoza, R.A. Defronzo, J.J. Dube, and N. Musi. 2013. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. Journal of Physiology 591 (11): 2897–2909. https://doi.org/10.1113/jphysiol.2012.247510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivas, D.A., D.J. McDonald, N.P. Rice, P.H. Haran, G.G. Dolnikowski, and R.A. Fielding. 2016. Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 310 (7): R561-569. https://doi.org/10.1152/ajpregu.00198.2015.

Article  PubMed  PubMed Central  Google Scholar 

Lo, C.J., H.Y. Tang, C.Y. Huang, C.M. Lin, H.Y. Ho, M.S. Shiao, and M.L. Cheng. 2018. Metabolic Signature Differentiated Diabetes Mellitus from Lipid Disorder in Elderly Taiwanese. Journal of Clinical Medicine. https://doi.org/10.3390/jcm8010013.

Article  PubMed  PubMed Central  Google Scholar 

Murao, N., N. Yokoi, H. Takahashi, T. Hayami, Y. Minami, and S. Seino. 2022. Increased glycolysis affects beta-cell function and identity in aging and diabetes. Mol Metab 55: 101414. https://doi.org/10.1016/j.molmet.2021.101414.

Article  CAS  PubMed  Google Scholar 

Li, X., J. Wang, L. Wang, Y. Gao, G. Feng, G. Li, J. Zou, M. Yu, Y.F. Li, C. Liu, X.W. Yuan, L. Zhao, H. Ouyang, J.K. Zhu, W. Li, Q. Zhou, and K. Zhang. 2022. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduction and Targeted Therapy 7 (1): 162. https://doi.org/10.1038/s41392-022-00964-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng, L., K.S.L. Lam, and A. Xu. 2020. The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nature Reviews. Endocrinology 16 (11): 654–667. https://doi.org/10.1038/s41574-020-0386-0.

Article  CAS  PubMed  Google Scholar 

Henriksson, E., and B. Andersen. 2020. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 11: 601349. https://doi.org/10.3389/fendo.2020.601349.

Article  PubMed  Google Scholar 

Badman, M.K., A. Koester, J.S. Flier, A. Kharitonenkov, and E. Maratos-Flier. 2009. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150 (11): 4931–4940. https://doi.org/10.1210/en.2009-0532.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villarroya, J., J.M. Gallego-Escuredo, A. Delgado-Angles, M. Cairo, R. Moure, M. Gracia Mateo, J.C. Domingo, P. Domingo, M. Giralt, and F. Villarroya. 2018. Aging is associated with increased FGF21 levels but unaltered FGF21 responsiveness in adipose tissue. Aging Cell 17 (5): e12822. https://doi.org/10.1111/acel.12822.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomita, Y., Z. Fu, Z. Wang, B. Cakir, S.S. Cho, W. Britton, Y. Sun, A. Hellstrom, S. Talukdar, and L.E.H. Smith. 2020. Long-acting FGF21 inhibits retinal vascular leakage in in vivo and in vitro models. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21041188.

Article  PubMed  PubMed Central  Google Scholar 

Zhou, X., X. Wang, L. Lu, M. Deng, and X. Shi. 2022. Fibroblast growth factor 21 improves lipopolysaccharide-induced pulmonary microvascular endothelial cell dysfunction and inflammatory response through SIRT1-mediated NF-kappaB deacetylation. Canadian Journal of Physiology and Pharmacology 100 (6): 492–499. https://doi.org/10.1139/cjpp-2021-0454.

Article  CAS  PubMed  Google Scholar 

Hanks, L.J., O.M. Gutierrez, M.M. Bamman, A. Ashraf, K.L. McCormick, and K. Casazza. 2015. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. Journal of Clinical & Translational Endocrinology 2 (2): 77–82. https://doi.org/10.1016/j.jcte.2015.02.001.

Article  Google Scholar 

Wang, D., F. Liu, L. Zhu, P. Lin, F. Han, X. Wang, X. Tan, L. Lin, and Y. Xiong. 2020. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. Journal of Neuroinflammation 17 (1): 257. https://doi.org/10.1186/s12974-020-01921-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Q., H. Zhou, H. Lin, Z. Ma, and H. Fan. 2020. Porcine circovirus type 2 exploits JNK-mediated disruption of tight junctions to facilitate Streptococcus suis translocation across the tracheal epithelium. Veterinary Research 51 (1): 31. https://doi.org/10.1186/s13567-020-00756-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, R., B. Li, S.M. Lam, and G. Shui. 2020. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. Journal of Genetics and Genomics 47 (2): 69–83. https://doi.org/10.1016/j.jgg.2019.11.009.

Article  CAS  PubMed  Google Scholar 

Wei, Z., J. Xi, S. Gao, X. You, N. Li, Y. Cao, L. Wang, Y. Luan, and X. Dong. 2018. Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice. Science and Reports 8 (1): 5423. https://doi.org/10.1038/s41598-018-23484-2.

Article  CAS  Google Scholar 

Vermillion, M.S., R.L. Ursin, S.E. Attreed, and S.L. Klein. 2018. Estriol Reduces Pulmonary Immune Cell Recruitment and Inflammation to Protect Female Mice From Severe Influenza. Endocrinology 159 (9): 3306–3320. https://doi.org/10.1210/en.2018-00486.

Article  PubMed  PubMed Central  Google Scholar 

Van Nguyen, D., T.L.L. Nguyen, Y. Jin, L. Kim, C.S. Myung, and K.S. Heo. 2022. 6’-Sialylactose abolished lipopolysaccharide-induced inflammation and hyper-permeability in endothelial cells. Archives of Pharmacal Research 45 (11): 836–848. https://doi.org/10.1007/s12272-022-01415-0.

Article  CAS  PubMed  Google Scholar 

Salminen, A., K. Kaarniranta, and A. Kauppinen. 2017. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Research Reviews 37: 79–93. https://doi.org/10.1016/j.arr.2017.05.004.

Article  CAS  PubMed  Google Scholar 

Wang, Q., J. Yuan, Z. Yu, L. Lin, Y. Jiang, Z. Cao, P. Zhuang, M.J. Whalen, B. Song, X.J. Wang, X. Li, E.H. Lo, Y. Xu, and X. Wang. 2018. FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Molecular Neurobiology 55 (6): 4702–4717. https://doi.org/10.1007/s12035-017-0663-7.

Article  CAS  PubMed  Google Scholar 

Huen, S.C., A. Wang, K. Feola, R. Desrouleaux, H.H. Luan, R. Hogg, C. Zhang, Q.J. Zhang, Z.P. Liu, and R. Medzhitov. 2021. Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation. Journal of Experimental Medicine. https://doi.org/10.1084/jem.20202151.

Article  PubMed  PubMed Central  Google Scholar 

Kang, K., P. Xu, M. Wang, J. Chunyu, X. Sun, G. Ren, W. Xiao, and D. Li. 2020. FGF21 attenuates neurodegeneration through modulating neuroinflammation and oxidant-stress. Biomedicine & Pharmacotherapy 129: 110439. https://doi.org/10.1016/j.biopha.2020.110439.

Article  CAS  Google Scholar 

Wang, X.M., H. Xiao, L.L. Liu, D. Cheng, X.J. Li, and L.Y. Si. 2016. FGF21 represses cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 signaling pathway in an AMPK-dependent manner. Experimental Cell Research 346 (2): 147–156. https://doi.org/10.1016/j.yexcr.2016.06.020.

Article  CAS  PubMed  Google Scholar 

Fang, H., S. Ghosh, L.C. Sims, K.P. Stone, C.M. Hill, D. Spires, D.V. Ilatovskaya, C.D. Morrison, T.W. Gettys, and K. Stadler. 2021. FGF21 prevents low-protein diet-induced renal inflammation in aged mice. American Journal of Physiology Renal Physiology 321 (3): F356–F368. https://doi.org/10.1152/ajprenal.00107.2021.

留言 (0)

沒有登入
gif