Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation

Shipp CL, Gergen PJ, Gern JE, Matsui EC, Guilbert TW. Asthma management in children. J Allergy Clin Immunol Pract. 2023;11(1):9–18. https://doi.org/10.1016/j.jaip.2022.10.031.

Article  PubMed  Google Scholar 

Pijnenburg MW, Nantanda R. Rising and falling prevalence of asthma symptoms. Lancet. 2021;398(10311):1542–3. https://doi.org/10.1016/S0140-6736(21)01823-7.

Article  PubMed  Google Scholar 

Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet. 2021;398(10311):1569–80. https://doi.org/10.1016/S0140-6736(21)01450-1.

Article  PubMed  PubMed Central  Google Scholar 

Lajiness JD, Cook-Mills JM. Catching our breath: updates on the role of dendritic cell subsets in asthma. Adv Biol (Weinh). 2023;7(6):e2200296. https://doi.org/10.1002/adbi.202200296.

Article  PubMed  Google Scholar 

Haczku A. The dendritic cell niche in chronic obstructive pulmonary disease. Respir Res. 2012;13(1):80. https://doi.org/10.1186/1465-9921-13-80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furlong-Silva J, Cook PC. Fungal-mediated lung allergic airway disease: the critical role of macrophages and dendritic cells. PLoS Pathog. 2022;18(7):e1010608. https://doi.org/10.1371/journal.ppat.1010608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Upham JW, Xi Y. Dendritic cells in human lung disease: recent advances. Chest. 2017;151(3):668–73. https://doi.org/10.1016/j.chest.2016.09.030.

Article  PubMed  Google Scholar 

Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol. 2022;129(6):709–18. https://doi.org/10.1016/j.anai.2022.07.027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36–44. https://doi.org/10.1038/ni.3052.

Article  CAS  PubMed  Google Scholar 

Humeniuk P, Dubiela P, Hoffmann-Sommergruber K. Dendritic cells and their role in allergy: uptake, proteolytic processing and presentation of allergens. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071491.

Article  PubMed  PubMed Central  Google Scholar 

Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–605. https://doi.org/10.1111/all.14318.

Article  CAS  PubMed  Google Scholar 

Munson PV, Adamik J, Hartmann FJ, et al. Polyunsaturated fatty acid-bound α-fetoprotein promotes immune suppression by altering human dendritic cell metabolism. Cancer Res. 2023;83(9):1543–57. https://doi.org/10.1158/0008-5472.CAN-22-3551.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herber DL, Cao W, Nefedova Y, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16(8):880–6. https://doi.org/10.1038/nm.2172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rehman A, Hemmert KC, Ochi A, et al. Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol. 2013;190(9):4640–9. https://doi.org/10.4049/jimmunol.1202312.

Article  CAS  PubMed  Google Scholar 

Zhao F, Xiao C, Evans KS, et al. Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity. 2018;48(1):147-60.e7. https://doi.org/10.1016/j.immuni.2017.12.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol. 2017;17(10):608–20. https://doi.org/10.1038/nri.2017.66.

Article  CAS  PubMed  Google Scholar 

Ellis JM, Frahm JL, Li LO, Coleman RA. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol. 2010;21(3):212–7. https://doi.org/10.1097/mol.0b013e32833884bb.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen WC, Wang CY, Hung YH, Weng TY, Yen MC, Lai MD. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer. PLoS ONE. 2016;11(5):e0155660. https://doi.org/10.1371/journal.pone.0155660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuwata H, Nakatani E, Shimbara-Matsubayashi S, Ishikawa F, Shibanuma M, Sasaki Y, Yoda E, Nakatani Y, Hara S. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(11):1606–18. https://doi.org/10.1016/j.bbalip.2019.07.013.

Article  CAS  PubMed  Google Scholar 

Fujimoto Y, Itabe H, Kinoshita T, et al. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res. 2007;48(6):1280–92. https://doi.org/10.1194/jlr.M700050-JLR200.

Article  CAS  PubMed  Google Scholar 

Kuwata H, Hara S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism. Prostaglandins Other Lipid Mediat. 2019;144:106363. https://doi.org/10.1016/j.prostaglandins.2019.106363.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liao K, Liu B, et al. GITRL on dendritic cells aggravates house dust mite-induced airway inflammation and airway hyperresponsiveness by modulating CD4+ T cell differentiation. Respir Res. 2021;22(1):46. https://doi.org/10.1186/s12931-020-01583-x.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478(3):1338–43. https://doi.org/10.1016/j.bbrc.2016.08.124.

Article  CAS  PubMed  Google Scholar 

Jiang H, Zhang XW, Liao QL, Wu WT, Liu YL, Huang WH. Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small. 2019;15(48):e1901787. https://doi.org/10.1002/smll.201901787.

Article  CAS  PubMed  Google Scholar 

Mogilenko DA, Haas JT, L’homme L, et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell. 2019;178(1):263.

Article  CAS  PubMed  Google Scholar 

Qin T, Feng D, Zhou B, Bai L, Zhou S, Du J, Xu G, Yin Y. Melatonin attenuates lipopolysaccharide-induced immune dysfunction in dendritic cells. Int Immunopharmacol. 2023;120:110282. https://doi.org/10.1016/j.intimp.2023.110282.

Article  CAS  PubMed  Google Scholar 

Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol. 2007;82(6):1365–74. https://doi.org/10.1189/jlb.0307166.

Article  CAS  PubMed  Google Scholar 

van Helden MJ, Lambrecht BN. Dendritic cells in asthma. Curr Opin Immunol. 2013;25(6):745–54. https://doi.org/10.1016/j.coi.2013.10.002.

Article  CAS  PubMed  Google Scholar 

Liu S, Fan S, Wang Y, et al. ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in Cholangiocarcinoma. BMC Cancer. 2023;23(1):444. https://doi.org/10.1186/s12885-023-10903-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grube J, Woitok MM, Mohs A, Erschfeld S, Lynen C, Trautwein C, Otto T. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression. Cell Death Dis. 2022;13(8):704. https://doi.org/10.1038/s41419-022-05137-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibrahim J, Nguyen AH, Rehman A, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2012;143(4):1061–72. https://doi.org/10.1053/j.gastro.2012.06.003.

Article  CAS  PubMed  Google Scholar 

Killion EA, Reeves AR, El Azzouny MA, et al. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab. 2018;9:43–56. https://doi.org/10.1016/j.molmet.2018.01.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krawczyk CM, Holow

留言 (0)

沒有登入
gif