Combined Plasma Olink Proteomics and Transcriptomics Identifies CXCL1 and TNFRSF12A as Potential Predictive and Diagnostic Inflammatory Markers for Acute Kidney Injury

Hoste, E.A.J., J.A. Kellum, N.M. Selby, A. Zarbock, P.M. Palevsky, S.M. Bagshaw, et al. 2018. Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology 14 (10): 607–625. https://doi.org/10.1038/s41581-018-0052-0.

Article  CAS  PubMed  Google Scholar 

Kwiatkowska, E., L. Domanski, V. Dziedziejko, A. Kajdy, K. Stefanska, and S. Kwiatkowski. 2021. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22116109.

Article  PubMed  PubMed Central  Google Scholar 

Mesropian, P.D., J. Othersen, D. Mason, J. Wang, A. Asif, and R.O. Mathew. 2016. Community-acquired acute kidney injury: A challenge and opportunity for primary care in kidney health. Nephrology (Carlton, Vic.) 21 (9): 729–735. https://doi.org/10.1111/nep.12751.

Article  PubMed  Google Scholar 

Turgut, F., A.S. Awad, and E.M. Abdel-Rahman. 2023. Acute Kidney Injury: Medical Causes and Pathogenesis. Journal of Clinical Medicine. https://doi.org/10.3390/jcm12010375.

Article  PubMed  PubMed Central  Google Scholar 

Harrill, A.H., H. Lin, J. Tobacyk, and J.C. Seely. 2018. Mouse population-based evaluation of urinary protein and miRNA biomarker performance associated with cisplatin renal injury. Experimental Biology and Medicine (Maywood, N.J.) 243 (3): 237–247. https://doi.org/10.1177/1535370217740854.

Article  CAS  PubMed  Google Scholar 

Bonavia, A., and K. Singbartl. 2018. A review of the role of immune cells in acute kidney injury. Pediatric Nephrology(Berlin, Germany) 33 (10): 1629–1639. https://doi.org/10.1007/s00467-017-3774-5.

Article  PubMed  Google Scholar 

Singbartl, K., C.L. Formeck, and J.A. Kellum. 2019. Kidney-Immune system crosstalk in AKI. Seminars in Nephrology 39 (1): 96–106. https://doi.org/10.1016/j.semnephrol.2018.10.007.

Article  CAS  PubMed  Google Scholar 

Kuo, P.Y., K.F. Tsai, P.J. Wu, P.C. Hsu, C.H. Wu, W.C. Lee, et al. 2023. Interleukin-18 and gelsolin are associated with acute kidney disease after cardiac catheterization. Biomolecules. https://doi.org/10.3390/biom13030487.

Article  PubMed  PubMed Central  Google Scholar 

Farooqui, N., M. Zaidi, L. Vaughan, T.D. McKee, E. Ahsan, K.D. Pavelko, et al. 2023. Cytokines and immune cell phenotype in acute kidney injury associated with immune checkpoint inhibitors. Kidney International Reports 8 (3): 628–641. https://doi.org/10.1016/j.ekir.2022.11.020.

Article  PubMed  Google Scholar 

Kurts, C., U. Panzer, H.J. Anders, and A.J. Rees. 2013. The immune system and kidney disease: basic concepts and clinical implications. Nature Reviews Immunology 13 (10): 738–753. https://doi.org/10.1038/nri3523.

Article  CAS  PubMed  Google Scholar 

Bolisetty, S., and A. Agarwal. 2009. Neutrophils in acute kidney injury: not neutral any more. Kidney International 75 (7): 674–676. https://doi.org/10.1038/ki.2008.689.

Article  CAS  PubMed  Google Scholar 

Wang, X., K.C. Yip, A. He, J. Tang, S. Liu, R. Yan, et al. 2022. Plasma olink proteomics identifies CCL20 as a novel predictive and diagnostic inflammatory marker for preeclampsia. Journal of Proteome Research 21 (12): 2998–3006. https://doi.org/10.1021/acs.jproteome.2c00544.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao, X.H., B.F. Chen, J. Liu, Y.H. Tan, S. Chen, F. Zhang, et al. 2023. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Frontiers in Molecular Neuroscience. https://doi.org/10.3389/fnmol.2023.1185021.

Article  PubMed  PubMed Central  Google Scholar 

Gradin, A., H. Andersson, T. Luther, S.B. Anderberg, S. Rubertsson, M. Lipcsey, et al. 2021. Urinary cytokines correlate with acute kidney injury in critically ill COVID-19 patients. Cytokine. https://doi.org/10.1016/j.cyto.2021.155589.

Article  PubMed  PubMed Central  Google Scholar 

Sun, B.B., J.C. Maranville, J.E. Peters, D. Stacey, J.R. Staley, J. Blackshaw, et al. 2018. Genomic atlas of the human plasma proteome. Nature 558 (7708): 73–79. https://doi.org/10.1038/s41586-018-0175-2.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Haslam, D.E., J. Li, S.T. Dillon, X. Gu, Y. Cao, O.A. Zeleznik, et al. 2022. Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics. https://doi.org/10.1002/pmic.202100170.

Article  PubMed  PubMed Central  Google Scholar 

Wei, Q., and Z. Dong. 2012. Mouse model of ischemic acute kidney injury: technical notes and tricks. American Journal of Physiology. Renal Physiology 303 (11): F1487–F1494. https://doi.org/10.1152/ajprenal.00352.2012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y., H. Ma, J. Shao, J. Wu, L. Zhou, Z. Zhang, et al. 2015. A role for tubular necroptosis in cisplatin-induced AKI. Journal of the American Society of Nephrology 26 (11): 2647–2658. https://doi.org/10.1681/ASN.2014080741.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology 10 (12): 826–837. https://doi.org/10.1038/nri2873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaltenmeier, C., R. Wang, B. Popp, D. Geller, S. Tohme, and H.O. Yazdani. 2022. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury. Cells. https://doi.org/10.3390/cells11142222.

Article  PubMed  PubMed Central  Google Scholar 

Eltzschig, H.K., and T. Eckle. 2011. Ischemia and reperfusion–from mechanism to translation. Nature Medicine 17 (11): 1391–1401. https://doi.org/10.1038/nm.2507.

Article  CAS  PubMed  Google Scholar 

Stasi, A., A. Intini, C. Divella, R. Franzin, E. Montemurno, G. Grandaliano, et al. 2017. Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrology, Dialysis, Transplantation 32 (1): 24–31. https://doi.org/10.1093/ndt/gfw250.

Article  CAS  PubMed  Google Scholar 

Peerapornratana, S., C.L. Manrique-Caballero, H. Gomez, and J.A. Kellum. 2019. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney International 96 (5): 1083–1099. https://doi.org/10.1016/j.kint.2019.05.026.

Article  PubMed  PubMed Central  Google Scholar 

Vidya, M.K., V.G. Kumar, V. Sejian, M. Bagath, G. Krishnan, and R. Bhatta. 2018. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. International Reviews of Immunology 37 (1): 20–36. https://doi.org/10.1080/08830185.2017.1380200.

Article  CAS  PubMed  Google Scholar 

Chen, J.J., T.H. Lee, C.C. Lee, and C.H. Chang. 2021. Using lipocalin as a prognostic biomarker in acute kidney injury. Expert Review of Molecular Diagnostics 21 (5): 455–464. https://doi.org/10.1080/14737159.2021.1917384.

Article  CAS  PubMed  Google Scholar 

Hughes, C.E., and R.J.B. Nibbs. 2018. A guide to chemokines and their receptors. FEBS Journal 285 (16): 2944–2971. https://doi.org/10.1111/febs.14466.

Article  CAS  PubMed  Google Scholar 

Akcay, A., Q. Nguyen, Z. He, K. Turkmen, D. Won Lee, A.A. Hernando, et al. 2011. IL-33 exacerbates acute kidney injury. Journal of the American Society of Nephrology 22 (11): 2057–2067. https://doi.org/10.1681/ASN.2010091011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, P., X. Li, W. Lv, and Z. Xu. 2020. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2019.109693.

Article  Google Scholar 

Ciesielska, A., M. Matyjek, and K. Kwiatkowska. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences 78 (4): 1233–1261. https://doi.org/10.1007/s00018-020-03656-y.

Article  CAS  PubMed  Google Scholar 

Akcay, A., Q. Nguyen, and C.L. Edelstein. 2009. Mediators of inflammation in acute kidney injury. Mediators of Inflammation. https://doi.org/10.1155/2009/137072.

Article  PubMed  Google Scholar 

Su, L., N. Li, H. Tang, Z. Lou, X. Chong, C. Zhang, et al. 2018. Kupffer cell-derived TNF-alpha promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death & Disease 9 (3): 323. https://doi.org/10.1038/s41419-018-0377-4.

Article  CAS  Google Scholar 

Wiley, S.R., L. Cassiano, T. Lofton, T. Davis-Smith, J.A. Winkles, V. Lindner, et al. 2001. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15 (5): 837–846. https://doi.org/10.1016/s1074-7613(01)00232-1.

Article  CAS  PubMed  Google Scholar 

Wiley, S.R., and J.A. Winkles. 2003. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine & Growth Factor Reviews 14 (3–4): 241–249. https://doi.org/10.1016/s1359-6101(03)00019-4.

留言 (0)

沒有登入
gif