Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion

Bal-Öztürk, A., E. Özcan-Bülbül, H.E. Gültekin, B. Cecen, E. Demir, A. Zarepour, et al. 2023. Application of convergent science and technology toward ocular disease treatment. Pharmaceuticals (Basel). 16 (3): 445.

Article  PubMed  PubMed Central  Google Scholar 

Wang, Z., W. Shan, H. Li, J. Feng, S. Lu, B. Ou, et al. 2019. The PACAP-derived peptide MPAPO facilitates corneal wound healing by promoting corneal epithelial cell proliferation and trigeminal ganglion cell axon regeneration. International Journal of Biological Sciences 15 (12): 2676–2691.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bardag-Gorce, F., R.H. Hoft, A. Wood, J. Oliva, H. Niihara, A. Makalinao, et al. 2016. The role of E-cadherin in maintaining the barrier function of corneal epithelium after treatment with cultured autologous oral mucosa epithelial cell sheet grafts for limbal stem deficiency. Journal of Ophthalmology 2016: 4805986.

Article  PubMed  PubMed Central  Google Scholar 

Li, S., K. Pang, S. Zhu, K. Pate, and J. Yin. 2022. Perfluorodecalin-based oxygenated emulsion as a topical treatment for chemical burn to the eye. Nature Communications 13 (1): 7371.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Yao, G., X. Mo, S. Liu, Q. Wang, M. Xie, W. Lou, et al. 2023. Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair. Nature Communications 14 (1): 3604.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Bonelli, F., I. Demirsoy, R.M. Lasagni Vitar, P. Fonteyne, and G. Ferrari. 2023. Topical formulations of Aprepitant are safe and effective in relieving pain and inflammation, and drive neural regeneration. The Ocular Surface 30: 92–103.

Article  PubMed  Google Scholar 

Yu, F., D. Gong, D. Yan, H. Wang, N. Witman, Y. Lu, et al. 2023. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Molecular Therapy 31 (8): 2454–2471.

Article  CAS  PubMed  Google Scholar 

Chen, Z., H.Y. Lao, and L. Liang. 2021. Update on the application of amniotic membrane in immune-related ocular surface diseases. Taiwan Journal of Ophthalmology 11 (2): 132–140.

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y., S. Wang, H. Alemi, T. Dohlman, and R. Dana. 2022. Immune regulation of the ocular surface. Experimental Eye Research 218: 109007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo, W., J. Lee, K.H. Noh, S. Lee, D. Jung, M.H. Kabir, et al. 2019. Progranulin attenuates liver fibrosis by downregulating the inflammatory response. Cell Death & Disease 10 (10): 758.

Article  Google Scholar 

Wang, B., Q. Zhang, L. Wu, C. Deng, M. Luo, Y. Xie, et al. 2023. Data-independent acquisition-based mass spectrometry(DIA-MS) for quantitative analysis of patients with chronic hepatitis B. Proteome Science 21 (1): 9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon, M.J., T. Logan, S.L. DeVos, and G. Di Paolo. 2023. Lysosomal functions of progranulin and implications for treatment of frontotemporal dementia. Trends in Cell Biology 33 (4): 324–339.

Article  CAS  PubMed  Google Scholar 

Kao, A.W., A. McKay, P.P. Singh, A. Brunet, and E.J. Huang. 2017. Progranulin, lysosomal regulation and neurodegenerative disease. Nature Reviews Neuroscience 18 (6): 325–333.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altmann, C., V. Vasic, S. Hardt, J. Heidler, A. Häussler, I. Wittig, et al. 2016. Progranulin promotes peripheral nerve regeneration and reinnervation: Role of notch signaling. Molecular Neurodegeneration 11 (1): 69.

Article  PubMed  PubMed Central  Google Scholar 

Logan, T., M.J. Simon, A. Rana, G.M. Cherf, A. Srivastava, S.S. Davis, et al. 2021. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184 (18): 4651–68.e25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, D., F. Yu, D.N. Gong, S.Y. Zhang, H. Sun, and Y. Fu. 2023. Cell-free matrix derived from adipose mesenchymal stromal cells enhances corneal rehabilitation via delivery of nerve regenerative PGRN. Materials and Design 227: 111786.

Article  CAS  Google Scholar 

Bizrah, M., A. Yusuf, and S. Ahmad. 2019. An update on chemical eye burns. Eye (London, England) 33 (9): 1362–1377.

Article  CAS  PubMed  Google Scholar 

Lan, C., G. Liu, L. Huang, X. Wang, J. Tan, Y. Wang, et al. 2022. Forkhead domain inhibitor-6 suppresses corneal neovascularization and subsequent fibrosis after alkali burn in rats. Investigative Ophthalmology & Visual Science 63 (4): 14.

Article  Google Scholar 

Zhang, K., M.Y. Guo, Q.G. Li, X.H. Wang, Y.Y. Wan, Z.J. Yang, et al. 2021. Drp1-dependent mitochondrial fission mediates corneal injury induced by alkali burn. Free Radical Biology & Medicine 176: 149–161.

Article  CAS  Google Scholar 

Ouyang, W., S. Wang, D. Yan, J. Wu, Y. Zhang, W. Li, et al. 2023. The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduction and Targeted Therapy 8 (1): 371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chikama, T., N. Takahashi, M. Wakuta, N. Morishige, and T. Nishida. 2008. In vivo biopsy by laser confocal microscopy for evaluation of traumatic recurrent corneal erosion. Molecular Vision 14: 2333–2339.

PubMed  PubMed Central  Google Scholar 

Yan, D., F. Yu, L.B. Chen, Q.K. Yao, C.X. Yan, S.Y. Zhang, et al. 2020. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn. Investigative Ophthalmology and Visual Science. 61 (14): 21.

ADS  Google Scholar 

Liu, Z., W. Tang, J. Liu, Y. Han, Q. Yan, Y. Dong, et al. 2023. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioactive Materials 20: 610–626.

Article  CAS  PubMed  Google Scholar 

Wei, Q., Z. Jin, W. Zhang, Y. Zhao, Y. Wang, Y. Wei, et al. 2023. Honokiol@PF127 crosslinked hyaluronate-based hydrogel for promoting wound healing by regulating macrophage polarization. Carbohydrate Polymers 303: 120469.

Article  CAS  PubMed  Google Scholar 

Yan, D., F. Yu, L. Chen, Q. Yao, C. Yan, S. Zhang, et al. 2020. Subconjunctival injection of regulatory T cells potentiates corneal healing via orchestrating inflammation and tissue repair after acute alkali burn. Investigative Ophthalmology & Visual Science 61 (14): 22.

Article  CAS  Google Scholar 

Kasamatsu, M., T. Arima, T. Ikebukuro, Y. Nakano, Y. Tobita, M. Uchiyama, et al. 2022. Prophylactic instillation of hydrogen-rich water decreases corneal inflammation and promotes wound healing by activating antioxidant activity in a rat alkali burn model. International Journal of Molecular Sciences 23 (17): 9774.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verma, S., I.Y. Moreno, C. Prinholato da Silva, M. Sun, X. Cheng, T.F. Gesteira, et al. 2023. Endogenous TSG-6 modulates corneal inflammation following chemical injury. The Ocular Surface 32: 26–38.

Article  PubMed  Google Scholar 

Sall, K., G.N. Foulks, A.D. Pucker, K.L. Ice, R.C. Zink, and G. Magrath. 2023. Validation of a modified national eye institute grading scale for corneal fluorescein staining. Clinical Ophthalmology 17: 757–767.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunningham, J.G., J.D. Scripter, S.A. Nti, and E.S. Tucker. 2022. Early construction of the thalamocortical axon pathway requires c-Jun N-terminal kinase signaling within the ventral forebrain. Developmental Dynamics 251 (3): 459–480.

Article  CAS  PubMed  Google Scholar 

Yan, D., C. Yan, F. Yu, S. Zhang, L. Chen, N. Wu, et al. 2020. Exploitation of human mesenchymal stromal cell derived matrix towards the structural and functional restoration of the ocular surface. Biomaterials Science 8 (17): 4712–4727.

Article  CAS  PubMed  Google Scholar 

Bu, Y., K.C. Shih, H.L. Wong, S.S. Kwok, A.C. Lo, J.Y. Chan, et al. 2023. The association between altered intestinal microbiome, impaired systemic and ocular surface immunity, and impaired wound healing response after corneal alkaline-chemical injury in diabetic mice. Frontiers in Immunology 14: 1063069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yazdanpanah, G., R. Shah, R.S.S. Raghurama, K.N. Anwar, X. Shen, S. An, et al. 2021. In-situ porcine corneal matrix hydrogel as ocular surface bandage. The Ocular Surface 21: 27–36.

Article  PubMed  PubMed Central  Google Scholar 

Mohan, R.R., L.M. Martin, and N.R. Sinha. 2021. Novel insights into gene therapy in the cornea. Experimental Eye Research 202: 108361.

Article  CAS  PubMed  Google Scholar 

Caprara, G.A., S. Perni, C. Morabito, M.A. Mariggiò, and S. Guarnieri. 2014. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates. European Journal of Histochemistry 58 (4): 2453.

CAS  PubMed  PubMed Central  Google Scholar 

Galasso, C., I. Orefice, P. Pellone, P. Cirino, R. Miele, A. Ianora, et al. 2018. On the neuroprotective role of astaxanthin: New perspectives? Marine Drugs 16 (8): 247.

Article 

留言 (0)

沒有登入
gif