Colorimetric Detection of Acid Phosphatase and Malathion Using NiCo2O4 Nanosheets as Peroxidase-Mimicking Activity

Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN. Acid phosphatases. Mol Pathol. 2002;55:65–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Wang X, Kong RM, Xia L, Qu F. Metal-organic framework as a multi-component sensor for detection of Fe3+, ascorbic acid and acid phosphatase. Chin Chem Lett. 2021;32(1):198–202.

Article  CAS  Google Scholar 

Li S, Fu G, Wang Y, Xiang Y, Mu S, Xu Y, Liu X, Zhang H. A dual-signal fluorescent probe for detection of acid phosphatase. Anal Bioanal Chem. 2021;413:3925–32.

Article  CAS  PubMed  Google Scholar 

Chen S, Chen XB, Liu WY, Yu YL, Liu MX. Phosphorescence, fluorescence, and colorimetric triple-mode sensor for the detection of acid phosphatase and corresponding inhibitor. Anal Chim Acta. 2023;1275: 341612.

Article  CAS  PubMed  Google Scholar 

Fredj Z, Ben Ali M, Abbas MN, Dempsey E. Determination of prostate cancer biomarker acid phosphatase at a copper phthalocyanine-modified screen printed gold transducer. Anal Chim Acta. 2019;1057:98–105.

CAS  PubMed  Google Scholar 

Yamauchi Y, Ido M, Ohta M, Maeda H. High performance liquid chromatography with an electrochemical detector in the cathodic mode as a tool for the determination of p-nitrophenol and assay of acid phosphatase in urine samples. Chem Pharm Bull. 2004;52:552–5.

Article  CAS  Google Scholar 

Calvo-Marzal P, Rosatto SS, Granjeiro PA, Aoyama H, Kubota LT. Electroanalytical determination of acid phosphatase activity by monitoring p-nitrophenol. Anal Chim Acta. 2001;441:207–14.

Article  CAS  Google Scholar 

Ruan CM, Wang W, Gu BH. Detection of acid phosphatase using surface enhanced Raman spectroscopy. Anal Chem. 2006;78:3379–84.

Article  CAS  PubMed  Google Scholar 

Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. Environ Sci Pollut Res. 2020;27:26036–57.

Article  CAS  Google Scholar 

Bala R, Dhingra S, Kumar M, Kavita B, Mittal S, Sharma RK, Wangoo N. Detect ion of organophosphorus pesticide-Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem Eng J. 2017;311:111–6.

Article  CAS  Google Scholar 

Sun P, Gao YL, Xu C, Lian YF. Determination of six organophosphorus pesticides in water samples by three-dimensional graphene aerogel-based solid-phase extraction combined with gas chromatography/mass spectrometry. RSC Adv. 2018;8:10277–83.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Mayán L, Ramil M, Cela R, Rodríguez I. Determination of pesticide residues in wine by solid-phase extraction on-line combined with liquid chromatography tandem mass spectrometry. J Food Compos Anal. 2021;104: 104184.

Article  Google Scholar 

Bakirci GT. Determination of polar pesticides based on a modified QuPPe with liquid chromatography coupled to tandem mass spectrometry. J Food Quality. 2023. https://doi.org/10.1155/2023/3290567.

Article  Google Scholar 

Kang G, Zhao D, Wang H, Liu F, Wang T, Chen C, Lu Y. Malathion detection based on polydopamine enhanced oxidase-mimetic activity of palladium nanocubes. Talanta. 2023;262: 124730.

Article  CAS  PubMed  Google Scholar 

Zandieh M, Liu J. Nanozymes: definition, activity, and mechanisms. Adv Mater. 2023. https://doi.org/10.1002/adma.202211041.

Article  PubMed  Google Scholar 

Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412.

Article  CAS  PubMed  Google Scholar 

Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Accounts Mater Res. 2021;2:534–47.

Article  CAS  Google Scholar 

Chen Z, Yu Y, Gao Y, Zhu Z. Rational design strategies for nanozymes. ACS Nano. 2023;17(14):13062–80.

Article  CAS  PubMed  Google Scholar 

Wang BR, Zheng LY, Cao QE. Application of copper-based nanozymes in biochemical analysis. Chin J Anal Lab. 2022;41(12):1455–9.

CAS  Google Scholar 

Huang M, Zheng WF, Cheng R, Zhu F, Wang W, Wang J. Research progress on alkaline phosphatase activity assays based on the morphological changes of nanoprobes. Chin J Anal Lab. 2022;41(12):1391–9.

CAS  Google Scholar 

Song H, Ye K, Peng Y, Wang L, Niu X. Facile colorimetric detection of alkaline phosphatase activity based on the target-induced valence state regulation of oxidase-mimicking Ce-based nanorods. J Mater Chem B. 2019;7:5834.

Article  CAS  PubMed  Google Scholar 

Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

Article  ADS  CAS  PubMed  Google Scholar 

Wang D, Jana D, Zhao Y. Metal-organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53(7):1389–400.

Article  CAS  PubMed  Google Scholar 

Meng Y, Li W, Pan X, Gadd GM. Applications of nanozymes in the environment. Environ Sci Nano. 2020;7:1305–18.

Article  CAS  Google Scholar 

Ye K, Niu X, Song H, Wang L, Peng Y. Combining CeVO4 oxidase-mimetic catalysis with hexametaphosphate ion induced electrostatic aggregation for photometric sensing of alkaline phosphatase activity. Anal Chim Acta. 2020;1126:16–23.

Article  CAS  PubMed  Google Scholar 

Ye K, Wang L, Song H, Li X, Niu X. Bifunctional MIL-53(Fe) with pyrophosphatemediated peroxidase-like activity and oxidation stimulated fluorescence switching for alkaline phosphatase detection. J Mater Chem B. 2019;7:4794.

Article  CAS  PubMed  Google Scholar 

Guo JW, Yang ZW, Liu XL, Zhang LW, Guo WB, Zhang J, Ding LH. 2D Co metal-organic framework nanosheet as an oxidase-like nanozyme for sensitive biomolecule monitoring. Rare Met. 2023;42(3):797–805.

Article  CAS  Google Scholar 

Liu Y, Wei X, Chen J, Yu YL, Wang JH, Qiu H. Acetylcholinesterase activity monitoring and natural antineurological disease drug screening via rational design of deep eutectic solvents and CeO2-Co(OH)2 nanosheets. Anal Chem. 2022;94:5970–9.

Article  CAS  PubMed  Google Scholar 

Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 2021;13:154.

Article  ADS  CAS  Google Scholar 

Chen CX, Zhang CH, Ni PJ, Jiang YY, Wang B, Lu YZ. “Light-on” colorimetric assay for ascorbic acid detection via boosting the peroxidase-like activity of Fe-MIL-88. J Anal Test. 2022;6:67–75.

Article  Google Scholar 

Wang F, Chen L, Liu D, Ma W, Dramou P, He H. Nanozymes based on metal-organic frameworks: construction and prospects. Trends Anal Chem. 2020;133: 116080.

Article  CAS  Google Scholar 

Niu X, Ye K, Li Z, Zhao H, Wang L, Pan J, Song H, Lan M. Pyrophosphate-mediated on–off–on oxidase-like activity switching of nanosized MnFe2O4 for alkaline phosphatase sensing. J Anal Test. 2019;3:228–37.

Article  Google Scholar 

Smith CW, Chen Y-S, Nandu N, Kachwala M, Yigit MV. The analysis of Zirconium (IV) oxide (ZrO2) nanoparticles for peroxidase activity. J Anal Test. 2019;3:246–52.

Article  Google Scholar 

Luo J, Liu R, Zhao S, Gao Y. Bimetallic Fe-Co nanoalloy confined in porous carbon skeleton with enhanced peroxidase mimetic activity for multiple biomarkers monitoring. J Anal Test. 2023;7:53–68.

Article  Google Scholar 

Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. 2D material–based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem. 2022;414:2971–89.

Article  CAS  PubMed  Google Scholar 

Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based nanozymatic profiling: advances spanning chemistry, biomedical, and environmental sciences. Adv Mater. 2023. https://doi.org/10.1002/adma.202307337.

Article  PubMed  PubMed Central  Google Scholar 

Su L, Dong W, Wu C, Gong C, Gong Y, Zhang Y, Li L, Mao G, Feng S. The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: mechanistic understanding and colorimetric biosensing. Anal Chim Acta. 2017;951:124–32.

Article  CAS  PubMed  Google Scholar 

Gao G, Wu HB, Ding S, Liu LM, Lou XW. Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small. 2015;11:804–8.

Article  CAS  PubMed  Google Scholar 

Ge DD, Wang YZ, Zhang Y, Song JM, Shen MZ. Preparation of new hydrophobic deep eutectic solvents and their application in dispersive liquid-liquid microextraction of safranine T and ponceau 4R in water samples. Chin J Anal Lab. 2022;41(7):815–82040.

CAS  Google Scholar 

Fu G, Gao C, Quan K, Li H, Qiu H, Chen J. Phosphorus-doped deep eutectic solvent-derived carbon dots-modified silica as a mixed-mode stationary phase for reversed-phase and hydrophilic interaction chromatography. Anal Bioanal Chem. 2023;415:4255–64.

留言 (0)

沒有登入
gif