A Biomimetic Membrane-Coated Nanoprobe for the Ratiometric Fluorescence Detection of Phospholipase A2

Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res. 2022;86(1): 101158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerminati S, Paoletti L, Aguirre A, Peirú S, Menzella HG, Castelli ME. Industrial uses of phospholipases: current state and future applications. Appl Microbiol Biotechnol. 2019;103(6):2571–82.

Article  CAS  PubMed  Google Scholar 

McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: function, and therapeutics. Prog Lipid Res. 2020;78(3): 101018.

Article  CAS  PubMed  Google Scholar 

Balboa MA, Balsinde J. Phospholipases: from structure to biological function. Biomolecules. 2021;11(3):428.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanemaru K, Nakamura Y. Activation mechanisms and diverse functions of mammalian phospholipase C. Biomolecules. 2023;13(6):915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother. 2021;139(1): 111610.

Article  CAS  PubMed  Google Scholar 

Liu SJ, Wen Q, Tang LJ, Jiang JH. Phospholipid−graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity. Anal Chem. 2012;84(14):5944–50.

Article  CAS  PubMed  Google Scholar 

Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, Yao S. Phospholipid-tailored titanium carbide nanosheets as a novel fluorescent nanoprobe for activity assay and imaging of phospholipase D. Anal Chem. 2018;90(11):6742–8.

Article  CAS  PubMed  Google Scholar 

Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011;111(10):6130–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi D, Feng C, Xie J, Zhang X, Dai H, Yan L. Recent progress of nanomedicine in secreted phospholipase A2 as a potential therapeutic target. J Mater Chem B. 2022;10(37):7349–60.

Article  CAS  PubMed  Google Scholar 

Hossain S, Pai KR, Piyasena ME. Fluorescent lipo-beads for the sensitive detection of phospholipase A2 and its inhibitors. ACS Biomater Sci Eng. 2020;6(4):1989–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuliani G, Marsillach J, Trentini A, Rosta V, Cervellati C. Lipoprotein-associated phospholipase A2 activity as potential biomarker of vascular dementia. Antioxidants. 2023;12(3):597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Fang RH, Gao W, Zhang L. A biomimetic nanoparticle to “lure and kill” phospholipase A2. Angew Chem Int Ed. 2020;59(26):10461–5.

Article  CAS  Google Scholar 

Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A2 family. Immunol Rev. 2023;317(1):42–70.

Article  CAS  PubMed  Google Scholar 

Topbas C, Swick A, Razavi M, Anderson NL, Pearson TW, Bystrom C. Measurement of lipoprotein-associated phospholipase A2 by use of 3 different methods: exploration of discordance between ELISA and activity assays. Clin Chem. 2018;64(4):697–704.

Article  CAS  PubMed  Google Scholar 

Guo C, Zhang Y, Li Y, Xu S, Wang L. 19F MRI nanoprobes for the turn-on detection of phospholipase A2 with a low background. Anal Chem. 2019;91(13):8147–53.

Article  CAS  PubMed  Google Scholar 

Alberti D, Thiaudiere E, Parzy E, Elkhanoufi S, Rakhshan S, Stefania R, Massot P, Mellet P, Aime S, Crich SG. 4-Amino-TEMPO loaded liposomes as sensitive EPR and OMRI probes for the detection of phospholipase A2 activity. Sci Rep. 2023;13(1):13725.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Khan S, Tyreman M, Stevens MM. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano. 2015;9(3):2565–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumari S, Gupta OP, Kumar S, Sasi M, Arpitha SR, Amirtham D, Mishra CB, Thimmegowda V, Krishnan V, Sachdev A, Kumar RR, Dahuja A. A novel continuous enzyme coupled colorimetric assay for phospholipase A2 and its application in the determination of catalytic activity of oil-body–associated oleosin protein. Food Anal Methods. 2022;15(5):2155–62.

Article  Google Scholar 

Zhang Y, Ai J, Dong Y, Zhang S, Gao Q, Qi H, Zhang C, Cheng Z. Combining 3D graphene-like screen-printed carbon electrode with methylene blue-loaded liposomal nanoprobes for phospholipase A2 detection. Biosens Bioelectron. 2019;126:255–60.

Article  CAS  PubMed  Google Scholar 

Wang L, Liu Y, Yan J, Li H, Tu Y. Novel electrochemiluminescent immunosensor using dual amplified signals from a CoFe prussian blue analogue and Au nanoparticle for the detection of Lp-PLA2. ACS Sens. 2023;8(7):2859–68.

Article  CAS  PubMed  Google Scholar 

Sagar R, Lou J, Best MD. Development of a bis-pyrene phospholipid probe for fluorometric detection of phospholipase A2 inhibition. Bioorg Med Chem. 2023;87(7): 117301.

Article  CAS  PubMed  Google Scholar 

Ng CY, Kwok TXW, Tan FCK, Low CM, Lam Y. Fluorogenic probes to monitor cytosolic phospholipase A2 activity. Chem Commun. 2017;53(11):1813–6.

Article  CAS  Google Scholar 

Ye Q, Dai T, Shen J, Xu Q, Hu X, Shu Y. Incorporation of fluorescent carbon quantum dots into metal-organic frameworks with peroxidase-mimicking activity for high-performance ratiometric fluorescent biosensing. J Anal Test. 2023;7(18):16–24.

Article  Google Scholar 

Zhang TT, Chen ZH, Shi GY, Zhang M. Eu3+-doped bovine serum albumin-derived carbon dots for ratiometric fluorescent detection of tetracycline. J Anal Test. 2022;6(6):365–73.

Article  Google Scholar 

Zhang Y, Wu W, Zhang J, Li Z, Ma H, Zhao Z. Facile method for specifically sensing sphingomyelinase in cells and human urine based on a ratiometric fluorescent nanoliposome probe. Anal Chem. 2021;93(34):11775–84.

Article  CAS  PubMed  Google Scholar 

Sun Z, Huang H, Zhang R, Yang X, Yang H, Li C, Zhang Y, Wang Q. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes. Nano Lett. 2021;21(15):6576–83.

Article  ADS  CAS  PubMed  Google Scholar 

Wang D, Shi Y, Hong Z, Li T. Alkylpolyglycoside doped semiconducting polymer nanoparticles for ratiometric fluorescence detection of riboflavin. Chin J Anal Lab. 2022;41(6):678–84.

CAS  Google Scholar 

Zhai H, Sun D, Zhang X, Gao M. Construction of a novel fluorescence ratiometric sensor and its detection for ascorbic acid. Chin J Anal Lab. 2022;41(11):1269–73.

CAS  Google Scholar 

Yang X, Li J, Zhang S, Li C, Ma J. Amplification-free, single-microbead-based Cas12a assay for one-step DNA detection at the single-molecule level. Anal Chem. 2022;94(38):13076–83.

Article  CAS  PubMed  Google Scholar 

Verma S, Dhenadhayalan N, Lin KC. Study of cholesterol phase effect on the dynamics of DOPC and DPPC small vesicle membranes using single-molecule fluorescence correlation spectroscopy. J Mol Liq. 2022;353(1): 118806.

Article  CAS  Google Scholar 

Perez MA, Beales PA. Biomimetic curvature and tension-driven membrane fusion induced by silica nanoparticles. Langmuir. 2021;37(47):13917–31.

Article  Google Scholar 

Yektaeian N, Mehrabani D, Sepaskhah M, Zare S, Jamhiri I, Hatam G. Lipophilic tracer Dil and fluorescence labeling of acridine orange used for Leishmania major tracing in the fibroblast cells. Heliyon. 2019;5(12): e03073.

Article  PubMed  PubMed Central  Google Scholar 

Trindade IC, Pound-Lana G, Pereira DJS, Oliveira LAM, Andrade MS, Vilela JMC, Postacchini BB, Mosqueira VCF. Mechanisms of interaction of biodegradable polyester nanocapsules with non-phagocytic cells. Eur J Pharm Sci. 2018;124:89–104.

Article  CAS  PubMed  Google Scholar 

Jensen KHR, Berg RW. CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci Rep. 2016;6(1):32674.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Zhou P, Lv P, Yu L, Liu S, Zhang L, Tian C. Fluorescence lifetime based distance measurement illustrates conformation changes of PYL10-CL2 upon ABA binding in solution state. Chin Chem Lett. 2019;30(5):1067–70.

Article  CAS 

留言 (0)

沒有登入
gif