π-Stacking Interactions Involved in Gynecologic Tankyrase-1/Inhibitor Recognition and Association: Implications for Rational Design of Aromatic Pentapeptide Ligands

Alzate-Morales JH, Caballero J, Vergara Jague A, González Nilo FD (2009) Insights into the structural basis of N2 and O6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations. J Chem Inf Model 49:886–899

Article  PubMed  Google Scholar 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

Article  PubMed  PubMed Central  Google Scholar 

Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

Article  ADS  Google Scholar 

Chen A (2011) PARP inhibitors: its role in treatment of cancer. Chin J Cancer 30:463–471

Article  ADS  PubMed  PubMed Central  Google Scholar 

Cheng H, Li X, Wang C, Chen Y, Li S, Tan J, Tan B, He Y (2019) Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett 443:80–90

Article  PubMed  Google Scholar 

Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB, Sangshetti JN (2020) Insights of tankyrases: a novel target for drug discovery. Eur J Med Chem 207:112712

Article  PubMed  Google Scholar 

Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

Article  PubMed  Google Scholar 

Elmasry GF, Aly EE, Awadallah FM, El-Moghazy SM (2019) Design and synthesis of novel PARP-1 inhibitors based on pyridopyridazinone scaffold. Bioorg Chem 87:655–666

Article  PubMed  Google Scholar 

Guo X, He D, Liu L, Kuang R, Liu L (2012) Use of QM/MM scheme to reproduce macromolecule–small molecule noncovalent binding energy. Comput Theor Chem 991:134–140

Article  Google Scholar 

Haikarainen T, Narwal M, Joensuu P, Lehtiö L (2013) Evaluation and structural basis for the inhibition of tankyrases by PARP inhibitors. ACS Med Chem Lett 5:18–22

Article  PubMed  PubMed Central  Google Scholar 

Haikarainen T, Krauss S, Lehtio L (2014) Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 20:6472–6488

Article  PubMed  PubMed Central  Google Scholar 

Hsiao SJ, Smith S (2008) Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90:83–92

Article  PubMed  Google Scholar 

Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66:399–421

Article  PubMed  Google Scholar 

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes wnt signalling. Nature 461:614–620

Article  ADS  PubMed  Google Scholar 

Huang H, Guzman-Perez A, Acquaviva L, Berry V, Bregman H, Dovey J, Gunaydin H, Huang X, Huang L, Saffran D, Serafino R, Schneider S, Wilson C, DiMauro EF (2013) Structure-based design of 2-aminopyridine oxazolidinones as potent and selective tankyrase inhibitors. ACS Med Chem Lett 4:1218–1223

Article  PubMed  PubMed Central  Google Scholar 

Janowski T, Pulay P (2012) A benchmark comparison of σ/σ and π/π dispersion: the dimers of naphthalene and decalin, and coronene and perhydrocoronene. J Am Chem Soc 134:17520–17525

Article  PubMed  PubMed Central  Google Scholar 

Kamal A, Riyaz S, Srivastava AK, Rahim A (2014) Tankyrase inhibitors as therapeutic targets for cancer. Curr Top Med Chem 14:1967–1976

Article  PubMed  Google Scholar 

Lehtiö L, Collins R, van den Berg S, Johansson A, Dahlgren LG, Hammarström M, Helleday T, Holmberg-Schiavone L, Karlberg T, Weigelt J (2008) Zinc binding catalytic domain of human tankyrase 1. J Mol Biol 379:136–145

Article  PubMed  Google Scholar 

Lehtiö L, Chi NW, Krauss S (2013) Tankyrases as drug targets. FEBS J 280:3576–3593

Article  PubMed  Google Scholar 

Li P, Liu F, Jia X, Shao Y, Hu W, Zheng J, Mei Y (2018) Efficient computation of free energy surfaces of Diels–Alder reactions in explicit solvent at ab initio QM/MM level. Molecules 23:248

Google Scholar 

Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201

Article  PubMed  Google Scholar 

Ma L, Wang X, Jia T, Wei W, Chua MS, So S (2015) Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Oncotarget 6:25390–25401

Article  PubMed  PubMed Central  Google Scholar 

McGaughey GB, Gagné M, Rappé AK (1998)  π-stacking interactions. alive and well in proteins. J Biol Chem 273:15458–15463

Article  PubMed  Google Scholar 

Menon M, Elliott R, Bowers L, Balan N, Rafiq R, Costa-Cabral S, Munkonge F, Trinidade I, Porter R, Campbell AD, Johnson ER, Esdar C, Buchstaller HP, Leuthner B, Rohdich F, Schneider R, Sansom O, Wienke D, Ashworth A, Lord CJ (2019) A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci Rep 9:201

Article  ADS  PubMed  PubMed Central  Google Scholar 

Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F (2005) In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 6:139

Article  PubMed  PubMed Central  Google Scholar 

Pan C, Chen L, Zhang X, Zhang D, Song Q, Peng J, Li Q (2022) Molecular insight into the π-stacking interactions of human ovarian cancer PARP-1 with its small-molecule inhibitors and rational design of aromatic amino acid-rich peptides to target PARP-1 based on the π-stacking network. J Chin Chem Soc 69:775–785

Article  Google Scholar 

Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040

Article  PubMed  Google Scholar 

Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS ONE 6:e18934

Article  ADS  PubMed  PubMed Central  Google Scholar 

Riffell JL, Lord CJ, Ashworth A (1998) Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 11:923–936

Article  Google Scholar 

Ryde U, Nilsson K (2003) Quantum chemistry can locally improve protein crystal structures. J Am Chem Soc 125:14232–14233

Article  PubMed  Google Scholar 

Sahu H, Gupta S, Gaur P, Panda AN (2015) Structure and optoelectronic properties of helical pyridine-furan, pyridine-pyrrole and pyridine-thiophene oligomers. Phys Chem Chem Phys 17:20647–22057

Article  PubMed  Google Scholar 

Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

Article  PubMed  Google Scholar 

Shultz MD, Kirby CA, Stams T, Chin DN, Blank J, Charlat O, Cheng H, Cheung A, Cong F, Feng Y, Fortin PD, Hood T, Tyagi V, Xu M, Zhang B, Shao W (2012) [1,2,4]triazol-3-ylsulfanylmethyl)-3-phenyl-[1,2,4] oxadiazoles: antagonists of the wnt pathway that inhibit tankyrases 1 and 2 via novel adenosine pocket binding. J Med Chem 55:1127–1136

Article  PubMed  Google Scholar 

Shultz MD, Cheung AK, Kirby CA, Firestone B, Fan J, Chen CH, Chen Z, Chin DN, Dipietro L, Fazal A, Feng Y, Fortin PD, Gould T, Lagu B, Lei H, Lenoir F, Majumdar D, Ochala E, Palermo MG, Pham L, Pu M, Smith T, Stams T, Tomlinson RC, Touré BB, Visser M, Wang RM, Waters NJ, Shao W (2013) Identification of NVP-TNKS656: the use of structure-efficiency relationships to generate a highly potent, selective, and orally active tankyrase inhibitor. J Med Chem 56:6495–6511

Article  PubMed  Google Scholar 

Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484–1487

Article  PubMed  Google Scholar 

Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, Moche M, Cohen MS, Schüler H (2017) Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem 60:1262–1271

Article  PubMed  Google Scholar 

Thorvaldsen TE (2017) Targeting tankyrase to fight WNT-dependent tumors. Basic Clin Pharmacol Toxicol 121:81–88

Article  PubMed  Google Scholar 

Verma A, Kumar A, Chugh A, Kumar S, Kumar P (2021) Tankyrase inhibitors: emerging and promising therapeutics for cancer treatment. Med Chem Res 30:50–73

Article  Google Scholar 

Villar R, Gil MJ, García JI, Martínez-Merino V (2005) Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs? J Comput Chem 26:1347–1358

Article  PubMed  Google Scholar 

Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 28:2074–2075

留言 (0)

沒有登入
gif